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Rapid Identification of Aliphatic Ketones from Vapor-Phase Infrared Spectra
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The need for the identification of compounds present in
complex gaseous mixture or after separation by gas
chromatography (GC) using vapor-phase infrared (VPIR)
spectrometry is becoming increasingly important. This is
primarily due to advances in Fourier transform infrared (FT-
IR) spectrometry allowing the acquisition of complete
spectra in a few tenths of a second with detection limits of
less than 1 ppb in long path infrared gas cells and below 10
nanogarms in the GC/FT-IR interface. With a GC/FT-IR
system hundreds of spectra can be generated per chromato-
gram. Clearly, the limiting processes are the spectral
searching and, in cases where the search results are
ambiguous, spectral interpretation steps. A powerful digital
computer is needed to control the interferometer and
perform the Fourier transformation from the time domain to
the frequency domain in order to obtain the spectrum. This
makes the incorporation of automatic spectral interpretation
in the same computer an obvious and sensible capability. It
should be kept in mind that the ultimate goal of the chemist
is not simply to produce a collection of spectra but rather to
determine what chemical compounds are present in the
unknown samples and what their significance is to the
problem at hand.

The laborious task of spectral identification has been
greatly simplified by the use of computer-based library
searching routines. Two general classes of algorithms has
been developed: procedures that seek to make an exact
identification of an unknown by direct comparison with
spectra of known compounds (which require the spectrum of
the unknown to be in the reference databases), and more
general approaches striving to identify all the functional
groups in the unknown. A wide range of encoding schemes
has been proposed1 to represent spectra in a digital form
suitable for library searching and interpretation. The ideal
storage format retains the minimum amount of information
necessary for correct identification of unknown compounds
in a form permitting rapid numerical comparison. The
optimum instrumental parameters for acquiring spectra for
spectral searching and identification are a function of the
sample, so that practical considerations require some degree
of standardization in sampling and measurement. In
addition, specific computer characteristics such as word size,
amount of semiconductor memory, and types of mass
storage devices must also be taken into account.

Buechi et al.2 have discussed the compilation of spectral
libraries in terms of five operations: selection, digitization,

completion, formatting, and verification. For infrared spectral
reference data bases, the problem of digitization has proven
to be critical. Ideally the encoding scheme should be equally
applicable to condensed-phase and vapor-phase spectra.
Historically, however, the compilation of large libraries of
condensed-phase spectra was begun over two decades before
the commercial introduction of the first FT-IR spectrometer,
so that most of these spectra were only available as hard
copy of analog data. The problem of converting large data-
bases of hard-copy spectra to a computer-compatible format
has been approached by the use of graphics digitizers.3 On
the other hand, most vapor-phase reference spectra were
measured using FT-IR spectrometers in the last ten years.
Thus not only is their quality higher from an instrumental
standpoint, but also they do not suffer from many of the
other disadvantages of condensed-phase infrared spectra,
such as shifting and relative intensity variation of bands
depending on the method of sample preparation, baseline
changes due to scattering, etc.

Due to the inherent complexity of infrared spectra, defini-
tive identification of unknown samples usually requires
direct comparison with previously collected spectra. Most
spectral searching algorithms are designed to step through
entire libraries in a sequential manner. These “brute force”
methods have become practical only in recent years with the
advent of completely digitized spectral libraries and fast,
low-cost computers combined with mass storage devices.
Much of the work of developing library-based spectral
identification programs arose from the need to interpret the
large number of spectra generated by GC/FT-IR experiments.
Although sequential searches can provide excellent results,4

it is inefficient to search an entire spectral database to
identify an unknown compound. The situation is exacer-
bated when a good match is not found because of the limited
size of the reference library. Investigation of a subset of the
database, in the form of a class of known compounds,
greatly reduces the amount of time required for the
identification. In addition, the chemical functionality of
molecules not present in the database can be ascertained. As
an example of the success of this approach, “chemigrams”5

are used to indicate the presence of absorptions of interest.
There are plots of integrated absorbance in a defined spectral
window. Rather than looking at the whole spectra, with the
use of chemigrams, the analyst sorts out only those that are
likely to contain a particular functional group. Although
useful, chemigrams are not always very selective, in that
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they show only the integrated absorbance over a chosen
frequency window.

In this work we show that the use of patterns of
absorbance provides a much more selective criterion for data
reduction. Computer algorithms have been written to search
through hundreds of spectra, retrieving only those that
display the pattern of interest, and these algorithms have
great potential for the analysis of GC/IR data. Although our
routines are based on the presence of spectral patterns, they
are distinct from pattern recognition methods in both
purpose and approach. Pattern recognition statistically sorts
a large database into a number of clusters, and assigns a
spectrum to a compound class based on the nearness of some
metric representing the spectrum to one of the clustered
units. Our approach seeks only to reduce the number of
spectra which must be further interpreted by the analyst, and
so looks only for similarity within a defined spectral
window. The database is not really required, and one need
not know in advance what functional group is responsible
for the pattern of interest.

We have also developed computer algorithms to evaluate
the selectivity of chemigram algorithms method, i.e. how
selectively chemigram algorithms pick up a specific functional
group by monitoring the absorbances over specified IR
spectral region. Chemigrams have been used for specific
functional group detection since their development in 1979,5

just as specific ion detection is used in GC/MS. Even though
selectivity is vital in chemigram-type approach, it has never
been evaluated statistically. The algorithms we developed
can give good evaluations for different functional groups,
and at different threshold values for each functional groups.
To find an optimum threshold value is very important
because it affects the selectivity of chemigram, i.e., how
many members of a particular compound class are recovered
and how many members of other functional group are
eliminated. Particularly, when the chemigram is used for
quantitative analysis of trace components, its selectivity
increases the sensitivity of the analysis of trace components,
by being insensitive to interfering spectral contributions.

Experiments

The computer programs described were written in
FORTRAN and run on an IBM 370 computer. The database
chosen was the EPA Vapor Phase Collection of 3300 spectra,
available form Dr. James de Haseth at the University of
Georgia. The spectra is measured at 2 cm−1 resolution from
4000 cm−1 to 450 cm−1. The header record includes
compound name, formula, molecular weigh, Chemical
Abstracts Service (CAS) registry number, melting point,
boiling point, Wiswesser Line Notation (WLN), etc. More
detail on the format of the records has appeared in the
literature.6

The basic strategy of our method was to use spectra from
the database to identify patterns of absorbance that
characterize certain functional groups; and then to search for
those patterns in a series of ‘unknown’ spectra. Repre-

sentatives of a functional group were identified by computer
searching the Wiswesser Line Notation (WLN) in the
database header records. The list of spectra retrieved by
WLN was checked against the compound names to avoid
coding errors. An “average spectrum” was calculated by
taking the mean absorbance of all the normalized spectra at
each frequency interval (2 cm−1) throughout the range. Since
the goal of the project is rapid screening, only a small
portion of the full IR range was used, a portion chosen
surrounding a characteristic band of that functional group.
For example, when searching for carboxylic acids or
alcohols, the O-H stretching region was used (3800-3400
cm−1). 

The average spectrum was considered to represent the
functional group. Other spectra were then tested in the same
frequency window to see if they exhibited the same pattern
of absorbance as the average. A score was assigned to each
spectrum, reflecting the degree of similarity to the average.
Since this process is similar to a library search routine,
except in that it is applied only to a small region of the
spectrum, we used the same metric reported in the literature
for library searching. 

In most of the work described herein, the “difference
squared” metric,7,8 was used.

MSQ = Σ(Si − Ri)2

Where MSQ is the similarity indicator and Si and Ri are the
absorbance values of the sample and reference spectra in a
frequency interval i. Clearly, the smaller the value of MSQ,
the better the match between the unknown and the reference
(or average) spectrum; a perfect match would give MSQ = 0.
ΣSi means the sum of the absorbance values of the sample
spectra in a frequency interval i.

The speed of our search algorithms is about the same as
chemigrams; both of them take about 100 sec to search 1000
spectra. When the moving pattern search is employed, it
takes about three times longer than the stationary pattern
search or chemigram-type search.

Results and Discussion

Our algorithms have been compared with chemigram
algorithms in all mid-IR region (4000-400 cm−1). A greater
degree of selectivity was observed than with chemigram
algorithms, especially in O-H stretching and carbonyl
stretching regions. For example, carboxylic acids have O-H
stretching and carbonyl stretching group regions. One
hundred eighty five spectra of carboxylic acids were
averaged in the 3800-3400 cm−1 window. The resulting
pattern showed a single sharp band centering around 3560
cm−1. The same 100 spectra from the database were again
considered; this time, MSQ for each was calculated − a
measure of similarity of the spectrum to the average pattern
for carboxylic acids. The results were striking. Four carbox-
ylic acids (100%) had the lowest MSQ values: 3-chlorobutyric
acid, 0.14; butyric acid, 0.26; heptanoic acid, 0.30;
isobutyric acid, 0.40. The next lowest MSQ was for 2-bromo-
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p-cresol with an MSQ = 1.70. Not only were the acids located
as best matching the average pattern, but there was a large
distance between the worst acid (MSQ = 0.40) and the next
closest nonacid (MSQ = 1.70). When the experiment was
repeated on the entire database, more than 92% of the
carboxylic acid spectra had MSQ values of 1.5 or less; fewer
than 4% of the non-carboxylic acids had MSQ of 1.5 or less.

The structural unit C=O has an excellent group frequency,
which is described as a stretching vibration. Since the C=O
group is a terminal group, only the carbon is involved in a
second chemical bond. This reduces the number of force
constants determining the spectral position of the vibration.
The C=O stretching vibration usually appears in a frequency
range that is relatively free of other vibrations. This reduces
the possibility that a vibration of the same species could
interact with the C=O vibration. For example, in many
carbonyl compounds the double bond of the C=O has a force
constant different from those of such structural units as C−O,
C−C, C−H, etc.; only structural units such as C=C have
force constants of magnitudes similar to that of the C=O
group. The C=C vibration could interact with the C=O if it
were of the same species, but generally it is not. Almost all
carbonyl compounds have a very intense and narrow peak in
the range of 1800-1600 cm−1. This is why this region is
considered as a very important region by organic chemists.

The C=O stretching vibrations of various carbonyl groups
absorb in the region 1800-1600 cm−1; ketones, aldehydes,
acids, amides, and carbonates all have absorption peaks
around 1750-1650 cm−1, while esters, acid chlorides, and
acid anhydrides tend to absorb at slightly higher wave-
numbers; that is, 1770-1725 cm−1. Usually, the type of
carbonyl group is identified by taking into account vibrations
other than the C=O stretching.

We selected aliphatic ketone compound class as the first
example in this region, since it has the simplest structure of
all carbonyl compounds, i.e., it has only carbon chains on
both sides of carbonyl group, for example, 4-decanone, 3-
undecanone, 3-methyl-, 2-pentanone, 2,8-dimethyl-, 5-non-

anone etc. Aliphatic ketones such as 5-nonacosanone9 and
7,7-dimethyl-5-ketoanatricontane10 have been known as
flavoring materials with secondary alcohols.11 In 1985,
Maria and Rozsa12 extracted a series of long-chain aliphatic
ketones from the fruits of Evodia hupehensis, and showed
honeybee attractant activity. Aliphatic ketones were also
found as major components in the analysis of paint vapors.
Ross et al.13 sampled the vapors by heating the paints for
approximately 30 min., then made derivatives of aldehydes
and ketones to form quaternary ammonium salts that were
analyzed by secondary ion mass spectrometry (SIMS) and
GC/MS. This method enables the selective detection of
carbonyl-containing compounds at picomole levels.

In the similar way as before, we selected 32 aliphatic
ketones from the database, and calculated the average
spectrum of 32 aliphatic ketones (Figure 1). The pattern of
aliphatic ketones in the window 1800-1600 cm−1 showed a
narrow sharp band centering around 1716 cm−1. We
calculated the MSQ values on the entire database using the
window of 1800-1600 cm−1. The search results were very
good (Figure 2). As a threshold level of MSQ = 3.20, 100% of
aliphatic ketones are found; i.e., all aliphatic ketones had
MSQ value less than 3.20, along with 2.4% of non-aliphatic
ketones. Most of the 2.4% of non-aliphatic compounds
found were saturated, 6-membered ring ketones, for ex-
ample, cyclohexanone (Figure 4), 4-methyl-, cyclohexanone,
2-propyl-, cyclohexanone, of which carbonyl stretching

Figure 1. The average spectrum of 32 aliphatic ketones Boxed
portion shows region used for comparison.

Figure 2. The pattern search results of aliphatic ketones (1800-
1600 cm−1). Percentage A; percentage of non-aliphatic ketones (−−)
with an MSQ value less than the threshold shown. Percentage B;
percentage of aliphatic ketones (----) with an MSQ value less than
the threshold shown.



1426     Bull. Korean Chem. Soc. 2004, Vol. 25, No. 9 Notes

vibrations overlap exactly with the ones of saturated
aliphatic ketones.14

These results can be compared with chemigram results
(Figure 3). In chemigram results, it is found that all aliphatic
ketones had the integrated intensity value greater than 4.0,
but more than 53% of non-aliphatic ketones had also the
integrated intensity greater than 4.0. Among those 53% of
non-aliphatic compounds, most of them were carbonyl
compounds including esters, carboxylic acids, aldehydes etc.

Conclusion

Computerized interpretation of vapor phase infrared
spectra using a pattern search for spectra/structure correla-
tion for vapor phase spectra is introduced. Rapid identi-
fication of aliphatic ketones in gaseous mixture can be
achieved using this pattern search. This new approach of

interpretation of infrared data based on the average pattern of
infrared spectra has potential for rapid identification of the
components of the complex mixture samples. The methods
can also be used in generating vapor-phase infrared spectra/
structure correlation rules to obtain a better understanding of
the correlation.
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Figure 3. The chemigram search results of aliphatic ketones (1800-
1600 cm−1). Percentage A; percentage of non-aliphatic ketones (−−)
with a Si value greater than the threshold shown. Percentage B;
percentage of aliphatic ketones (----) with a Si value greater than
the threshold shown.

Figure 4. The spectrum of cyclohexanone.


