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The molecular orbital calculations for solid HF are performed by using the pseudolattice method considering the coulomb
lattice sum. In order to obtain the reliabic net atomic charges and lattice energy of one dimensional chains, the limited
counting of interactions terms up to second neighbours for zig-zag chain and third neighbours for linear chain are sufficient
in this calculation. In three dimensional solid HF, the contribution of interaction energy between non-hydrogen bonded
neighbours to lattice energy is about 3.5% and the lattice energy of nonpolar structure is stablized by 2.05 kcal/mole com-
pared with that of polar structure. And, this method is further tested and compared with the other methods.

Introduction

Molecular orbital (MO) calculation of solid hydrogen
fluoride gives many interesting results, since it is a typical
example of molecular crystals held together by strong hydro-
gen bonds. As the molecules in molecular crystal are arranged
infinitely, the MO calculations using the truncated cluster
model can not predict the reasonable wavefunction and
quantum chemical properties of solid. Accordingly, following
methods were proposed by several workers in order to re-
present the characteristic properties of the solid. The per-
turbation method for hydrogen bonded molecular crystals
was proposed by Bacon and Santry,!-2 and a self-consistent
tight-binding calculation (crystal orbital method) originally
formulated by Del Re er al? was practiced in CNDQ/24.5
and ab initio®8 version to calculate the energy band of one
and two dimensional aggregates of hydrogen bonded molecul-
es. Small periodic cluster method (SPC) which is based on
the periodic boundary condition was proposed by Zunger
and was applied to perfect and defect crystals.®.1® Recently,
the pseudolattice (PL) method was proposed by No and Jhon
in order to perform the MO calculation of three dimensional
molecular crystals.!! For one dimensional molecular crystal
model, both SPC and PL methods give same results if PL
method does not involve coulomb lattice sum, since the tr-
anslational symmetry of unit cell and that of molecule become
identical in perfect one dimensional crystals.

Among the above methods, the PL method may be appro-
priate for describing the feature of solid because it contains
both the interaction due to the overlap of atomic orbitals and
the interaction through the bond. We have practiced this
method by including the coulomb interactions between the
fong distant molecules and the periodic cluster molecules.
This coulomb lattice sum was previously included in the per-
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turbation,? crystal orbital® and PL MO calculations.l!

In this paper, the justification of PL method is investigated
by the MO calculation of one dimensional (HF), chains.
And then, this method is extended to three dimensional HF
crystals. The lattice energy and the charge distribution of
HF crystals are obtained and compared with the other
methods.

Method of Calculations

HF crystal provides very useful system for the study of
hydrogen bond and one of good testing model for the MO
calculation of solid. Previously, MO calculations of one
dimensional linear and zig-zag chains containing up to 15 HF
molecules are performed by using CNDO/2 method2~* to
obtain the approximated lattice energy of infinite one dimen-
sional HF chains. Here, we use the CNDO/2 PL methodi?
including the coulomb lattice sum for one dimensional in-
finite HF chains in the various interaction order.’® In the
coulomb lattice sum, all the HF molecules within the range
of 200A distance are included.

Next, this method is applied for three dimensional HF
crystal in order to investigate the effects of nonhydrogen
bonded neighbours. For two structures, polar and nonpolar,
the calculations are performed. And, MO calculations are
performed for each structure in two cases; one with overlap
interaction of only the first nearest neighbours, (HF),, and
the other with overlap interaction up to 10 HF neighbours,
(HF)s. All the HF molecules, in 25X 19X 15 (a X bXc) unit
cells are included in the coulomb lattice sum.

The models of one dimensional zig~zag chain (Figure 1b)
and three dimensional polar structure (Figure 2) are construc-
ted with the data from the neutron diffraction study at 4.2K,"®
and the bond lengths of one dimensional linear chain (Figure
1a) are oblained from the CNDO/2 minimized data of HF
dimer.¥® The structure of three dimensional nonpolar HF
crystal in the same as that of polar HF crystal except the



reversed HF directions in the unit cell chain. All the geometric
data are listed in Table 1.

Results and Discussion

In Table 2, the lattice cnergies for one dimensional (HF),
chains are shown as a function of the number of monomers.
The nonadditivity in lattice energies of clusters is demonstra-
ted clearly in Table 2. It is shown that the lattice energy in-
creases considerably with the number of monomers. Same
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Figure 1. One—dimensional (HF),-chain a. linear arrangement
- §=180"°; b. zig—zag arrangement §=116.6°; $=29.6°.

O r

Figure 2. Three-dimensional HF polar structure (a=3.31 A
b=4.26A, c=5224).

TABLE 1: Molecular Geometries for (HF),

Geometry Bond distances Intermolecular
(A) angle
(degrec)
Linecar Ryr=1.01
. . 180
One dimensional CNDO/2- Ryrp=2.44
chain minimums
Zig-zag Ryr=0.97 116.6
Chain? Rpr=2.50 ZFHb= 296
Three dimensional Polar Ryr=0.97 116.6
molecular crystal
Rpp=2.50 /FHb= 296
Nonpolar Ryr=0.97 116.6
Rep=2.50 ZFHb= 29.6

« Ref. (16); * Ref. (15).

results was obtained by ab initio calculations,!” which were
restricted to the first few members of the series. The 4E, .,
which describes the stabilized energy by insertion of a
monomer into an already existing chain, converges much
faster than the average hydrogen bond energy, 4E.5 In the
case of infinite chains, of course, 4E and 4E,_;,, haveto
become identical (4E..).

In order to obtain the lattice energy of the infinite chain
(4E.), the lattice energies in Table 2 are extrapolated. Table
3 shows this extrapolated lattice energy, E.., and the results
of the PL. MO calculations for one dimensional chains.
For the linear HF chain, the calculated results of lattice energy
for (HFs model is within the error of 0.2 % compared with
AE.., and for (HF); model, the error is negligible. In the
case of (HF); model, the lattice energy is the same with that
of (HF); model. This results show that the interaction terms,
except electrostatic term, within third nearest neighbours are
sufficient to obtain the reliable lattice energy of HF linear
infinite chain. For the zig-zag chain, the calculated results of

TABLE 2: Lattice Energies of (HF), One Dimensional Chains

Geomertry Number of 4F« AE, 1.
monomer: n (kcal/mole) (Kcal/mole)
linear chain 3 10:88 1225
S 12.08 13.45
(CNDO/2 minimized 7 12.60 13.68
structure) 8 12.76 13.72
9 12.89 13.75
14 13.23 13.79
5 13.27 13.80
Zig-zag chain 3 8.69 - 950
5 9.39 10.18
7 9.69 10.32
5 9.86 10.37
11 9.96 10.39
13 10.04 10.40
14 10.07 10.41
15 10.09 10.41
«dEo= E((HF)');WE(HF) (m : number of hydrogen bonds

$ 4 1..=E((HF).) — (E(HF),-)
4Ref. (15)

2 : number of monomers).
+E(HF)). <Ref. (16).

TABLE 3: Lattice Energies for Infinite HF Chains Calculated by
Direct MO and the PL method Including Coulomb Lattice Sums*

Case Interaction Extrapolated® Our method
order (5®  value (kcal/mole) (Kcal/mole)
Linear (HF); i 12.89
chain (HF)s 2 13.80
13.83
(HF), 3 13.83
(HF) 4 13.83
Zig-zag (HF), 10.41
chain (FH), 2 10.43 10.43
(HF)g 3 10.43

« All molecules within the range of 200A distance are included
in coulomb lattice sum: ® The 7 denotes the maximal interaction
order;1® <The lattice cnergies in Table 2 are used to obtain the
extrapolated lattice energy for the infinite chain.



iattice energy for (HF), model is also within the error of
0.2 % compared with 4E.., and for (HF)s and (HF); models,
the errors are negligible.

Figure 3 shows the rapid convergency of net atomic charges
versus numbers of neighbours in this work. In order to obtain
the reliable net atomic charges, the interaction terms within
third nearest neighbours and those within second neighbours
are sufficient for MO calculation of linear and zig-zag HF
chain, respectively. As shown in Table 3 and Figure 3, the
slow convergency of HF linear chain in the lattice energy
and net atomic charges indicate that the 2p-orbital parallel
to bond axis contribute considerably to the interaction through
the bond.

As shown previously, the method used in this work is
appropriate for the MO calculation of solid HF and gives
rapid convergency for the reasonable lattice energy and net
atomic charges of solid HF.

Table 4 and 5 show the intramolecularand nearest neighbour
intermolecular density submatrices obtained from the center
of the density matrix of (HF)s chain and from our (HF),
model for the zig-zag chain. The agreement between two sets
of results is within 0.3 %. This provides one measure of the
accuracy of the method used in this work.

In table 6, this method is compared with the other methods
applied to the one dimensional HF chain. Both the perturba-
tion method and the crystal-orbital method, give considerable
difference in the lattice energy compared with the estimated
lattice energy (E..), and the SPC method without coulomb
lattice sum' needs a relatively large cluster to obtain reliable
values for the infinite chain, however, our PL method gives
reasonable results in the lattice energy, net atomic charges
and convergency. The satisfactory results in this work might
be ascribed to the fact that the interaction through bond is
well represented by the PL medel.

In Table 7, the results for three dimensional polar and non-
polar HF crystals are given. The lattice energy of (HF),
PL mode! which include the interaction of the HF neighbours
are stabilized by 0.38 kcal/mole for polar structure and 0,39

kcal/mole for nonpolar structure compared with that of
(HF), models which include the interactions of hydrogen
bonded neighbours only. Those stabilization energies have
their origin in the interaction through the space (the overlap of
electron cloud) between nonhydrogen bonded neighbours.
The influence of nonhydrogen bonded neighbours on net
atomic charges is relatively small although the electrons are
distributed between nonhydrogen bonded neighbours due to
the overlap of electron cloud. Accordi ng to the results of Table
7, the nonpolar structure is stable about 2.05 kcal/mole com-
pared with the results of the perturbation method 218 But
the neutron diffraction study shows that the proton arrange-
ment in HF crystal is polar.! Above disagreement between
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Figure 3. Dependence of the fluorine net charge on the interac-
tion order.

TABLE 4: Intra-and Intermolecular Density Submatrices for HF Zig-Zag Chain Calculated Directly. The x Axis Lies Perpendicular to the

Plane of the Chain and y Axis Along the Chain

Molecule I ——s———s- Mgr,cule : 3P, P Ngx,’lfmc . 7P, 2P, is
s 1.8711 0.0 —0.2100  0.1371 0.3910 —0.0375 0.0 0.0417 ~0.0367 0.0091
2P, 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2p, 1.5617  0.2263 0.7347 —0.0723 0.0 0.0718 —0.0711 0.0259
2P, 1.8541 —0.4187  0.0415 0.0 —0.0422 0.0407 -0.0140
15 0.7131 0.1116 0.0 —0.1565 0.1082 0.0065

TABLE 5:Intra-and Intermolecular Density Submatrices for HF Zig-Zag Chain Using Our Method. The Axes Are the Same asThose in Table 4

Molecule I —— s, 2 3P FI] 3‘&'“"‘6 . 3P, s
25 18711 00  —02098 01370 0.3910  —0.0376 00 00418  —00368  0.0091
2P, 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2p, 15622 02260 0.7344 00723 00 00719 —00712 00259
2, 1.8542 —0418 00415 00  —00423 00407 —0.0140
18 07125 01117 00  —01569 01085  0.0065
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TABLE 6: Comparison the Pseudo Lattice Method Including
Coulomb Lattice Sums with Other Methods

Estimated  Calculated
uct

Method Geometry values val Ref.
(kcal/mole) (kcal/mole)
Perturbation c 13.0 11.9 [2]
Crystal- CNDO/2-min. 14.2 15.95 [ 5]
orbital zig-zag
Small-
periodic- (HF)? 12.05 12.00 f10]
cluster
This work CNDO/2min.  13.83 13.80
linear (HF)s
Experimental 10.43 10.41

zig-zag (HF){
= The lattice energy estimated from direct calculation for the same
geometry, respectively; ® The lattice energy calculated by the
given method, respectively; < Ryr=0.99975A, Rpp=2.44275A,
ZHFH=136°; 4 R;m:0.921§, Rer=2.49A, /HFH=180°;
< Neutron diffraction study at 4K [Ref. 15].

TABLE 7: Lattice Energies and Charges for Three-dimensional HF
Crystal Calculated by Pseudo-Lattice Method Including Coulomb
Lattice Sum*

Lattice Net charge
Model energy for atom F
(kcal/mol) (e)
Polar (HF)¢-zig-zag
chain® 8.76 —0.2696
structure
(HF)6-three~
dimensional 9.14 —0.2701
pseudo-lattices
Nonpolar (HF)¢-zig-zag
chain® 10.80 —0.2918
(HF);5-three-
dimensional 11.19 —0.2923
pseudo-lattice*

“ Coulomb lattice sum is calculated up to 25X19X15 (aXbxc)
unit cell (about 80A sphere); ¥ Only nearest neighbour are included
in the calculation; < Calculation of interactions up to 10 members
of surrounding neighbours.

theoretical and experimental proton arrangement has been
discussed by crowe and Santry.1®
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