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The Menschuckin reaction of benzyl derivatives with pyri- Table 1 Second-order Rate Constants “fL/mol-s) and
dine have been studied many researéiéin various sol- Hammettpy (or BronstedBu,) Constants for the Reactions (Z)-
vents and at both atmospheric and high pressure. From the8abstituted Benzyl Bromides with (Y)-Substituted Imidazoles and
reactions, such researchers attempted to gain a detailé§)-Pyridines in Acetonitrile at 45C*

mechanism by checking mainly substituent effects. Imida- Nucleophile, (Y) (2)=4-CH H 4-Br 3-NO
zole contains both a pyridine-type nitrogen in the five MeM-imidazole H 62.12 49.42 42.52 32.69
bered ring and a pyrrole-type nitrogen. Imidazolea(pK 1-CHs 76.35 60.62 52.83 41.67
7.1) is a much stronger base than pyridine,§pB&.2) and an 4-CH; 90.95 72.31 64.00 51.72
important compound among its various derivatives is the (Bu) (0.29) (0.29) (0.31) (0.35)
biologically active hIStIdIT7e Buw R 0.999 0.999 0.999 0.999
e o e et e o e s s s 5
3-CHs 7331 46.02 39.81 24.85

nection, the Menschutkin reaction of substituted benzyl bro-
mlde_s \gwlt? substltu_te_d |_m|dazoles_and pyrldlnes has t_)een Be (Bu) 11,88 (0.30) -1.95 (0.31) -2.08 (0.33) -2.27 (0.36)
studied®!8in acetonitrile in order to investigate the substitu- fu R 0.999 0.999 0.999 0.999

ent effect in substrate and both nucleophiles. The mechanis- ! i i : i

tic information was gained from the linear free energyaDetermined conductimetically in duplicate; average deviation3%.
relationships using both notable Hammett and Bronsted type

parameters andb initio MO calculations were performed substrate and both nucleophiles. Meanwhile, the second-
by using the GAUSSIAN 98 program to optimize stable andorder rate constants for the reaction of imidazole are larger
TS structure at the RHF/6-31+G(d) IeVdbr the reaction of  than those of pyridine, due to mainly a larger basicity of imi-
benzyl chloride with both nucleophiles. dazole without 4-amino pyridine.

The Hammett and Bronsted coefficientsandf) are the The |py | values are increased toward to electron-with-
first derivatives of lodk as shown in Egs. (1) and (2), respec- drawing substituents and also are accord withBthealues
tively, both reflect the TS structures involved in a series ofin the Y-substituted pyridine series. The magnitudes of the
reactions with structural changes affecting the reaction cerj-ov | andB., values are degree of bond formation of benzyl
ter, and measure the degree of bond formation. a-carbon with N atom of mucleophile (CN).?° Therefore,

_ this is the reason why the electron withdrawing group,
p=0dlogkido @ Z = p-NO, has a largegdy |andBnu.
B=0Jlogk/dpK ) A comparison off3,, of imidazole to that of pyridine is
shown in Table 1. The values are very similar within the
range of 0.29-0.36 both, suggesting that the degree of bond
formation within both nucleophiles is similar in TS struc-
ture.

In Table 2, the negative; value for the entire range of
substituents indicates the dominance of bond fission in the
transition state. When th® value of imdazole is compared
with that of pyridine, the former is less negative than that of
) ) ridine, indicating that the degree of bond breaking is more
substituent effect was accelerated by an electron-donation ,%vanced in the reaction of pyridine than in that of imida-

both the substrate and nucleophiles of imidazole and pyri; o These results are confirmed by the bond distance (C
dine, while electron-withdrawing reversed the effects in theCI) as shown in the final column of Table 3, using the RHF/

4-NH, 768.3 513.6 527.3 419.3

In this paper, the variation of the TS structure for imida-
zole and pyridine within the above reactions has bee
reported. Detailed results will be reported in due course.

Results and Discussion

The Second-order rate constants, two Brongedand
Hammettpy of pyridine, are summarized in Table 1. The
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Table 2 Apparent Reaction Constanis)®) for the Reaction of  Table 3 Calculated Parameters of Optimized TS Structure for the
(2)-Substituted Benzyl Bromides with (Y)-Substituted Imidazoles Reaction of Benzyl Chloride with Imidazole and Pyridine by RHF/

and Pyridines in Acetonitrile at £& 6-31+G(d) level
Nucleophile, (Y) (2)=4-CH H 4-Br 3-NO _ Mulliken Charge (sum=0) DistancA)?
- Substrate Nucleophile

Imidazole H -0.34 -0.30 -0.27 -0.20 N of Nu. G of Sub. ClI N:Cq Co++Cl
1-CH  -0.34 029 025  -0.18 Benzyl Imidazole 0570 0.155 -0.725 1.99 2.58
4-Chg -0.34 028 -023 -0.14 Chloride Pyridine  0.453 0.289 -0.742 199 261

Pyridine H -0.72 -0.59 -0.52 -0.28 D -
3.CH, -0.64 -0.53 -0.47 -0.26 C and N--Cl bond length (A) in the TS structure
4-NH, -0.43 -0.32 -0.26 -0.05

In conclusion, in the reaction of benzyl bromides with
pyridines and imidazoles and the degree of bond formation
between the two nucleophiles in the transition state is simi-
lar. In regards to the bond breaking of these reactions, the

A former is more advanced the latter as shown in the transition
state structure in Figure 1.
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