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The evaluation of entropy is an important topic in relation

to the direction of spontaneous change. A variety of methods

for the calculation of the entropy and free energy have been

proposed.1-3 However, the calculation of the entropy through

computer simulation has posed difficulties because the

entropy is not a mechanical property but a statistical

property. The difficulties are related to large fluctuations

attendant upon the averages of the Boltzmann factors.

The particle insertion (PI) method provides a simple way

of calculating chemical potentials.4 In this method, the

excess chemical potential μ ex is expressed as

, (1)

where k is the Boltzmann constant, T is the absolute

temperature, and ΔΦ is the potential energy change which

would result from the insertion of a particle into an N-

particle system. Here, <…> denotes the canonical ensemble

average. In this method, the test particle is added at random.

This method is hard to apply at high densities due to

extremely low acceptance ratios of the inserted particles.

The cavity insertion method modified from the PI method

has been applied to the calculation of the free energy profile

of several small molecules in a lipid bilayer.5 On the other

hand, we can use the canonical ensemble average of effec-

tive acceptance ratios or reduced Boltzmann factors to

reduce large fluctuations stemming from the estimation of

the excess entropy.6 However, these methods are hard to

apply to complex systems because of significant residual

fluctuations. To solve the fluctuation problem fundamentally

and obtain more stable ensemble average, we may use an

acceptance ratio along with a scaling factor.7

In this work we approximately estimate the excess entropy

S
ex from the relation

, (2)

where s is the scaling factor and <…>Δ denotes the ensemble

average within a cell. Here the acceptance ratio, aR, is

written

, (3)

where Δφ is the potential energy change which would result

from the migration of a particle to a random position within

the cell during computer simulation. The cell is chosen to be

a cube, having a fixed volume of V/N, centered at the

sampled particle. A particle sampled during the constant

NVT molecular dynamics2 or Metropolis Monte Carlo2,8

simulation is migrated to a random position within a cell.

After the potential energy of the migrated particle is

calculated, the particle is replaced for the normal simulation.

The excess Helmholtz free energy Aex is obtained by

, (4)

where Uex is the average potential energy of the system. The

scaling factor in Eq. (2) is evaluated from the relation

. (5)

The scaling factors for hard-sphere (HS) fluids and Lennard-

Jones (LJ) fluids are easily obtained using available

simulation data.9,10 For the HS and LJ fluids, the scaling

factors are found to be linear functions of the reduced

density ρ* at low and intermediate densities, but the scaling

factors converge at high densities. The reduced quantities ρ*

and T* denote ρσ3 and kT/ε, respectively, where e is the well

depth of the LJ potential and σ is the distance at which the

potential energy passes through 0. For the HS and LJ fluids,

the scaling factors are given, respectively, by

 (6)

and

. (7)

The method of obtaining the excess entropy from Eq. (2)

will be termed the acceptance ratio (AR) method. 

Monte Carlo and molecular dynamics simulations were

performed for the HS and LJ fluids. All the simulations were

performed with 216 molecules and about 3 × 106 configu-

rations were averaged after equilibration using periodic

boundary conditions. A detailed description of the esti-
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mation of aR can be found elsewhere.11 The restricted

random search (RRS) method12 was used, along with the AR

method, to avoid the quasi-ergodicity. 

The excess free energies calculated using the AR method

for HS fluids are compared in Figure 1 with the results of

thermodynamic integration from the Carnahan-Starling

equation of state.9 The excess free energies calculated using

the AR method for the LJ fluids are shown in Figure 2,

compared with those from thermodynamic integration10 and

the Weeks-Chandler-Anderson perturbation theory.13 We

obtained very stable values converging to within ± 0.01 for

the excess free energies. Considering that a variety of

chemical and biological processes proceed in the high-

density region, it is remarkable that the present results are

very stable and in excellent agreement with the results of

other calculations for both the HS systems and the LJ

systems.

Whereas the application of the fluctuating cell model is

limited to high-density phases of two-dimensional hard

dumbbells,14 the AR method has been applied successfully

to three-dimensional systems. Because no reference system

is needed in the AR method, the excess entropy is directly

calculated and the difficulties arising from the phase

transitions of high-density fluids or solids can be over-

come.15 Moreover, the present method appears to be

extremely efficient. The AR method requires a simulation of

only 3 × 106 configurations to obtain the excess free energy

of for a square-well fluid at ρ* = 0.68 and T* = 1.29,

whereas the temperature and density scaling Monte Carlo

method requires a much longer simulation with a reference

state to obtain the same value.16 The quasi-ergodicity result-

ing from the Metropolis algorithm can be avoided using the

RRS method12 or the jump-walking method.17

Considering that the converged scaling factors differ little

between the HS fluids and the LJ fluids, the present method

may be extensively applicable to such solutions and

biological systems as their solvation free energies are largely

entropic and not enthalpic,18 as the PI method was modified

and applied to small molecules in a lipid bilayer.5 
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Figure 1. The excess free energies obtained by the AR method
(AR) and thermodynamic integration from Carnahan-Starling
equation of state (CS) for hard-sphere fluids.

Figure 2. The excess free energies obtained using the AR method
(AR), thermodynamic integration (TI), and the Weeks-Chandler-
Anderson (WCA) perturbation theory for Lennard-Jones fluids on
the isotherms T* = 0.75, 1.15, and 1.35.


