Table 1. Yields of Aldehydes in the Reduction of Representative Carboxylic Esters with NaGaH₄ in Tetrahydrofuran at $0 \, ^{\circ}\mathbb{C}^{a}$

Carboxylic acid ester	Time (h)	Yield of Aldehyde ^b (%)
isopropyl acetate	3	78°
phenyl acetate	3	75°
ethyl caproate	3	83
isopropyl caproate	3	80
tert-butyl caproate	3	81
ethyl cyclohexanoate	3	87
ethyl benzoate	6	67
isopropyl benzoate	6	75
tert-butyl benzoate	6	75
cyclohexyl benzoate	6	76
ethyl cinnamate	6	68
isopropyl cinnamate	6	63
tert-butyl cinnamate	6	76

^aTreated with 0.5 equiv of reagent for aliphatic and aromatic esters. ^bYields weres estimated by GLC. ^cYield was estimated by 2.4-dinitrophenylhydrazine.

vided the corresponding aldehydes in yields of 67-76%. α,β -unsaturated esters, such as ethyl cinnamate and isopropyl cinnamate, undergo the reduction to afford the corresponding olefinic aldehydes in yields of 68-76%.

One advantage of this reagent for aldehyde synthesis can be carried out at 0 $^{\circ}$ C instead of the very low temperature (-70 $^{\circ}$ C) or elevated temperature (65 $^{\circ}$ C). Therefore, sodium gallium hydride is also believed to be a good reagent for the synthesis of aldehydes from carboxylic acid esters.

The following procedure for the reduction is representative. An oven-dried, 50-mL flask, fitted with a side arm and a vent adapter connected to a mercury bubbler, was flushed with nitrogen and charged with 0.1253 g (1 mmol) of ethyl benzoate and 5.5 mL of tetrahydrofuran. The flask was immersed into the ice water bath and a precooled solution of sodium gallium hydride (2.5 mL, 0.2 M, 0.5 mmol) in tetrahydrofuran was added slowly with vigorous stirring. After 6 h, the reaction mixture was hydrolyzed with 10 mL of 2 N sulfuric acid and the suitable internal standard was added. And then the mixture was saturated with NaCl. The organic layer was subjected to GLC analysis on a Chromosorb-WHP, 10% Carbowax 20 M, 2 m, 1/8 inch column, indicating benzaldehyde in 67% yield.

Acknowledgment. The authors are thankful to professor N. M. Yoon for his help.

References

- 1. Zakharkin, L. I.; Khorlina, I. M. Tetrahedron Lett. 1962, 619.
- 2. Zakharkin, L. I.; Khorlina, I. K. Iza. Akad. Nauk SSSR, Ser. Khim 1964, 465.
- Weissman, P. M.; Brown, H. C. J. Org. Chem. 1966, 31, 282.
- 4. Muraki, M.; Mukaiyama, T. Chemistry Lett. 1975, 215.
- Yoon, N. M.; Jeong, K. H.; An, D. K. Bull. Korean Chem. Soc. 1991, 12, 7.

- 6. Cha, J. S. Bull. Korean Chem. Soc. 1992, 13, 670.
- 7. Dalts, J. A.; Nutt, W. R. Inorganic Syntheses 1977, 17, 48.

Reactions of Vinylpyridines and Vinylquinolines with Nitrosonium Tetrafluoroborate: One Step Synthesis of Nitrolic Acids

Raekyu Chang and Kyongtae Kim*

Department of Chemistry, Seoul National University, Seoul 151-742, Korea

Received March 13, 1995

The reactions of nitrosonium tetrafluoroborate (NOBF₄) with olefins in acetonitrile gave a different type of products depending on the structure of the olefin. For example, the reactions with primary or secondary olefins, *i.e.*, propene, *cis-* or *trans-*2-butene, and styrene, etc., gave 2-alkyl-N-hydroxyimidazolium tetrafluoroborate (1), whereas those with olefines having aryl groups at an olefinic carbon atom, *i.e.*, methylenethioxanthene and methylenexanthene, etc., gave 4 H-5,6-dihydro-1,2-oxazines (2)² as a major product.

Although NOBF₄ has been often utilized as either a single electron transfer oxidant³ or a weak electrophile,⁴ no systematic study on the reactions of NOBF₄ with structurally and/or electronically different olefins has been reported.

We have chosen 2-vinylpyridine (3a) for the reaction with NOBF₄ based on two reasons: First compound 3a is structurally similar to styrene previously studied¹ in respect of having an aromatic moiety attached to an olefinic carbon atom. Second, pyridine ring might reduce the π -electron density on the vinyl group so that a different reactivity of NOBF₄ toward 3a compared with styrene would be expected.

Surprisingly, the reaction of NOBF₄ with **3a** in acetonitrile at room temperature gave 2-pyridylacetonitrolic acid (**4a**) as a major product. 3-pyridyl- (**4b**) and 4-pyridylacetonitrolic acid (**4c**) were also obtained from the reactions with 3- (**3b**) and 4-vinylpyridines (**3c**), respectively under the same conditions. The formations of **4a** as well as **4b** and **4c** indicate that the distance between a nitrogen on the pyridine ring and a vinyl group is not important for the formation of the products. The reaction with 2-vinylquinoline (**3f**) under the same conditions gave an analogous product **4f**. However, it was unsuccessful to obtain 4-quinolylacetonitrolic acid as an isolable product from the reaction with 4-vinylquinoline. The yields and melting points of the nitrolic acids **4** prepared are summarized in Table 1.

Nitrolic acids have been synthesized by treatment of alde-

Table 1. Synthesis of acetonitrolic acid derivatives (4)⁵

Entry	NOBF ₄ (equiv)	yield† %	mp (dec.) °C
4a	2.65	82	142-144 (CHCl ₃)
4b	2.07	70	143-145 (EtOH)
4c	2.80	80	164-166 (acetone)
4d	2.29	91	102-104 (CCl ₄)
4 e	4.57	72 ‡	liquid
4f	2.73	90	123-124 (CHCl ₃)

†Isolated yield. ‡(2,6-Pyridyl)-bis-acetonitrolic acid was isolated in 0.3% yield. All products 4 were fully characterized by their spectroscopic (IR, NMR) and analytical data.

i, NaOD, D₂O, 1 day ii, NaBH₄, MgOH, 12 h iii, SOCl₂, CH₂Cl₂, 0 °C, 2 h iv, t-BuOK, THF, Δ, 11 h v, NOBF₄, CH₃CN, 3 h

Scheme 1.

hyde oximes,⁶ nitronic acids^{66,6c,7} or nitronate salts^{6c,8} with dinitrogen tetraoxide. Besides, acetonitrolic acid was synthesized in less than 6% yield by reaction of nitroethane with NaNO₂ in 20% aqueous NaOH at 0 $^{\circ}$ C.^{6e} To the best of our knowledge, no nitrolic acid has been prepared from the reactions of olefinic compounds.

In order to get the information about the origin of a methylene hydrogen of the compounds $\bf 4$, 2-(3-pyridyl)ethene-1,1- d_2 (8) was synthesized and treated with NOBF₄ under the same condition as in the reaction of $\bf 3b$. (Scheme 1). HNMR signals of nitrolic acid 9 showed $\bf ca$. 1:4 ratio of intensities of methylene to aromatic protons. This result indicates that one of methylene hydrogens of $\bf 4$ is originated from the terminal olefinic hydrogens. In the meantime, an intermediacy of (2'-nitroethenyl)pyridines for the formation of $\bf 4$ can be ruled out in view of the inertness of 2-methyl-6-(2'-nitroethenyl)pyridine ($\bf 10$)¹⁰ to NOBF₄ in acetonitrile at room temperature. Further study on the mechanism of the formation of $\bf 4$ from $\bf 3$ is in progress.

Acknowledgment. This work has been supported by Korea Research Foundation (Non Directed Research Fund), 1993.

References and Notes

- Scheinbaum, M. L.; Dines, M. B. Tetrahedron Lett. 1971, 2205
- Lee, G. H.; Lee, J. M.; Jeong, W. B.; Kim, K. Tetrahedron Lett. 1988, 29, 4437.
- (a) Bandilish, B. K.; Shine, H. J. J. Org. Chem. 1977,
 42, 561. (b) Conelly, N. G.; Demidowicz, G.; Kelly, R. L. J. Chem. Soc., Dalton Trans. 1975, 2335. (c) Muser,
 W. L.; Walford, T. L. J. Am. Chem. Soc. 1976, 98, 3035.
 (d) Kim, E. K.; Kochi, J. K. J. Org. Chem. 1989, 54, 1692.
- (a) Nielsen, A. T. In The Chemistry of Nitro and Nitroso Groups; Part 1, Feuer, H., Ed., John Wiely & Sons, New York, 1969, Chap 7, p 394-398.
 (b) Klamann, D.; Fligge, M.; Wegerstahl, P.; Kratzer, J. Chem. Ber. 1966, 99, 556.
 (c) Challis, B. C.; Lawson, A. J. J. Chem. Soc., Perkin Trans. II, 1973, 918.
- 5. Representative procedures for 4: To a solution of NOBF₄ (605 mg, 5.18 mmol) in dried CH₃CN (20 mL) was added dropwise a solution of 3a (205 mg, 1.95 mmol) in dried CH₃CN (30 mL) over a period of 10 min at room temperature. The solution was stirred for 3 h during which time the color of the solution turned from deep yellow to bright yellow. The reaction mixture was quenched with water (40 mL), followed by addition of aqueous NaHCO₃ to become pH 8-9. Removal of CH₃CN in vacuo, followed by extraction of the aqueous solution with EtOAc. The combined extract was washed with water and dried over MgSO₄. Evaporation of EtOAc, followed by chromatography (sillica gel, 70-230 mesh) using a mixture of hexane-EtOAc (1:1) gave 4a (290 mg, 1.60 mmol, 82%); ¹H NMR (CDCl₃, 80 MHz) δ 6.05 (s, 2H, CH₂), 7.56-8.76 (m, 4H, ArH), 12.70 (s, 1H, N-OH); IR (KBr) 3420-2200, 1560, 1550, 1480, 1430, 1380, 1350, 1290, 1050, and 1010 cm⁻¹; Anal. Calcd for C₇H₇N₃O₃: C, 46.41; H, 3.89; N, 23.19. Found: C, 46.42; H, 4.06; N, 23.26.
- (a) Bamberger, E.; Seligman, R. Ber. Dtsch. Chem. Ges.
 1902, 35, 3884. (b) Khmelnitskiik, L. I.; Novikov, S. S.; Lebedev, O. V. Izv. Akad. Nauk., SSSR, Ser. Khim. 1961, 477 (Chem. Abstr. 1961, 55, 23389). (c) Khmelnitskiik, L. I.; Novikov, S. S.; Lebedev, O. V. Zh. Obshch. Khim. 1958, 28, 2303, (Chem. Abstr. 1959, 53, 3111). (d) Khmelnitskiik, L. I.; Novikov, S. S.; Lebedev, O. V. Izv. Akad. Nauk., SSSR, Ser. Khim. 1960, 1783 (Chem. Abstr. 1961, 55, 1983). (e) Ehan, C.; Clery, M.; Hegarty, A. F.; Welch, A. J. J. Chem. Soc., Perkin Trans. II, 1991, 249.
- Tirov, A. I.; Siminov, V. V. Dokl. Akad. Nauk. SSSR, 1952, 83, 243 (Chem. Abstr. 1953, 47, 4298).
- Novikov, S. S.; Kebedev, O. V.; Khmelbitskiik, L. I.; Egorov, Yu. P. Zh. Obshch. Khim. 1958, 28, 2305 (Chem Abstr. 1959, 53, 4112).
- 9. Deuterium incorporation: 5 (95%); 6 (91%); 7 (91%); 8 (96%); 9 (96% for methylene hydrogens; 63% for oxime hydrogen).
- 10. Compound 10 was synthesized according to Scheme 2:

i, CH3NO2, NaOH, EtOH, r.t., 3 h ii, SOCl2, CH2Cl2, 0 °C, 2 h iii, Et3N, 2 h

Scheme 2.