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Observation of Supersymmetry in Rigid Symmetric Top Rotor
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It is explicitly shown that a supersymmetry structure exists in the spectrum of a rigid symmetric top rotor in the

molecule-fixed frame. Using projection operators constructed from the time-reversal symmetry of the rotor, the

full rotor Hamiltonian is separated into two parts, i.e., the bosonic and fermionic components. The construction,

without ambiguity, suggests that the rotor has a supersymmetry in it. This supersymmetry is mathematically

equivalent to that of the free rotor on a plane recently noted by Rau.
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Introduction

Though solid and fundamental experimental evidences of

supersymmetry in nature have yet to come,1,2 there have

been many efforts to find the supersymmetry in real physical

systems. Due to the complexity of real systems and/or the

spontaneous breaking of supersymmetry, the exact super-

symmetry may not be found but there are several examples

reported.3 These examples are approximate but are not

trivial at all. Rather they cast a profound implication in

understanding the nature. For example, an approximate

supersymmetry is observed at the spectra of complex nuclei

(Os-Ir, etc.)4,5 And singularities in a randomly diluted

ferromagnet are explained.6,7 Notably, a supersymmetry is

found in the electronic energy spectra of hydrogen atom and

its isoelectronic ions, and a similar behavior is also noted in

alkali atoms.8-13 The hydrogen atom under external field has

also a supersymmetric structure and the relativistic hydrogen

atom does too.14-17 Many examples are compiled in Refer-

ences 18 and 19.

As another example of supersymmetry, we suggest that

the rotation of a rigid symmetric top molecule must have a

supersymmetric spectrum. As well known,20-23 the molecule-

fixed angular momentum of a symmetric top rotor is

quantized along the figure axis. This quantization produces a

double degeneracy of eigenstates apart from the degeneracy

by quantization along the space-fixed principal axis. The

double degeneracy is due to the time-reversal symmetry.

That is, a molecule rotates one way or the other and the two

rotations are identical when the molecule is symmetric top.

Surely it implies that there could be a supersymmetry in this

system. The simpler but identical to the symmetric top rotor

system is the rotation of a body on a two-dimensional plane

that Rau noted very recently.24

The requirements for a Hamiltonian H being super-

symmetric are as follows:3 (i) There is a zero-energy non-

degenerate ground eigenstate of H. (ii) All the excited states

are doubly degenerate, i.e., the states are in pairs. (iii) There

should exist supersymmetry generating operators (or super-

charges) Q and Q+ that transform the degenerate pairs into

one another and yield zero upon acting on the ground

eigenstate. (iv) The Q and Q+ should satisfy the following

closed superalgebra, i.e., [H, Q] = [H, Q+] = 0, H = {Q+, Q},

and {Q, Q} = {Q+, Q+} = 0. The commutator [,] and the

anticommutator {,} are defined as [O1, O2] = O1O2 − O2O1

and {O1, O2} = O1O2 + O2O1. In this work we explicitly

show that the symmetric top rotor system fulfills the above

supersymmetry requirements.

Symmetric top rotor

The Hamiltonian for rotational motion of a rigid body (or

a molecule) can be expressed as21 

 (1)

The three principal moments of inertia, Ia, Ib, Ic, which lie on

principal axes fixed in the molecule, completely determine

the rotational properties. The exact relation between a, b, c

and x, y, z, depends on the system but can be left free for

convenience. The x, y, z are the coordinates in the molecule-

fixed (or the body-fixed) frame. 

When the rotational constants B = C ≠ A, the molecule is

called a symmetric top rotor. Let the z-axis be the figure axis

whose principal moment of inertia is different from the other

two, then the Hamiltonian is

. (2)

where . The X, Y, Z are the

coordinates in the space-fixed frame. The eigenfunction is

represented symbolically as  where the quantum

number J is for , M for , and K for . Since the

quantum number M represents the quantization of total

angular momentum on the space-fixed Z-axis, it is out of

concern in this work. Therefore the eigenfunction of interest

can be simply written as ,

 (3)

where ϕ is the rotation angle on the molecule-fixed xy-plane.
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2

 + AĴz
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normalization constant and the functions depending on J and

M. Recall that .

Then the Schrödinger equation for the symmetric top rotor

is

 (4)

where the rotational eigenenergy is

 (5)

with J = 0, 1, 2,… and K = 0, ±1, ±2, …, ± J. (  = 1 is used

throughout.) When A–B > 0, the system is called the prolate

symmetric top (e.g., CH3Cl) and when A–B < 0, it is the oblate

symmetric top (e.g., BF3). From now on we consider only the

prolate top case because all of the following arguments are

equally applied to the oblate top. In Eq. (5), one sees that the ro-

tational state (within a given J) has the zero energy non-degen-

erate ground state (K = 0) and the doubly degenerate excited

states with K and –K. The energy levels of  states, for a giv-

en J, are presented in Fig. 1. The exact double degeneracy occurs

only when the symmetric top molecule is rigid. Of course, the

real molecules are not rigid. However, the nonadiabatic cou-

plings that break the symmetric top symmetry are usually so

small that the couplings can be neglected. For instance, see the

Reference 25 for CH3Cl. 

The double degeneracy arises because the rotational

motion of a symmetric top molecule about the figure z-axis

has the time-reversal symmetry.20,21 Let  be the time-

reversal (complex conjugate) operator that is antiunitary, i.e.,

.  (6)

Of course the time-reversal operator acts only on the 

motion, i.e., the rotation of molecule on the molecule-fixed

xy-plane. Also one can easily find the following properties

of the time-reversal and angular momentum operators, i.e., 

 and = 0.  (7)

For a given J, the Hamiltonian H may be expressed as a

sum of two parts, i.e., 

H = HS + CJ , HS = (A−B)  and CJ = BJ(J + 1). (8)

The HS is the part that exhibits the time-reversal symmetry,

while the constant term CJ simply shifts the eigenenergy

levels of HS. When the  is acted upon the eigenstates of HS,

there are two subsets of states. One is a set of states

[ ] having the eigenvalue of +1 and the other

[ ] having the eigenvalue of –1. In the following

section we examine if the Hamiltonian HS satisfies the

requirements for being supersymmetric.

Supersymmetry

The full eigenspace of HS can be separated into two

subspaces of H(+) and H(−). The H(+) involves the 

states and the H(−) does the  states. The division can

be accomplished by using the projection operators  and

,

 = ( ) and  = ( ). (9)

The projection operators have the following properties,

i.e.,

 = ,  = ,  =  = 0, and

 +  = . (10)

Also one immediately finds that 

 =  and  = . (11)

The ( ) should be the eigenfunctions of

the Hamiltonian HS and the time-reversal related projection

operator ( ) simultaneously so that

 =  and 

 = . (12)
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The corresponding Schrödinger equations are

 = (A−B)K2  and 

 = (A−B)K2 . (15)

The supersymmetry of HS can be explained as follows.26
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JK

−( ) ϕ( ) ψ
JK

+( ) ϕ( )

H +( ) ψ
JK

+( ) ϕ( ) ψ
JK

+( ) ϕ( )

H −( ) ψ
JK

−( ) ϕ( ) ψ
JK

−( ) ϕ( )
Figure 1. Rotational energy levels of a prolate symmetric top rotor,

 at a fixed J.JK| 〉
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We write HS in a matrix form of . The super-

charges can be written as  and  .

Then one immediately notices that {Q,Q} = {Q+, Q+} = 0. If

we set  = A+A and  = AA+, the following two

relations, i.e., [HS, Q] = [HS, Q
+] = 0 & HS = {Q+, Q}, are

satisfied. (Requirement (iv) is fulfilled.)

The Hamiltonian HS is supersymmetric if we find

appropriate expressions of the operators Q (or A) and Q+ (or

A+). One of possible choices for A and A+ is

A =  and A+ = . (16)

Let us verify if the choice is appropriate. The Hamiltonians

H(+) in (+)-subspace and H(−) in (–)-subspace are, using Eqs.

(10) and (11),

 

H(+) = A+A = [ ] [ ]

  = (A−B) ( )  = (A−B) ( )  

  = (A−B)  (17)

and similarly,

H(−) = AA+ = (A−B) . (18)

They are identical with the original HS but the projection

operator plays a role of distinguishing the Hamiltonian H(+)

from the partner Hamiltonian H(−). 

The non-degenerate ground state (K = 0) has zero energy

and it belongs to the (+)-subspace because of  =

 or  = 0. (Requirement (i) is fulfilled.)

Therefore H(+) can be considered as the bosonic component

and H(−) as the fermionic. One can easily find that the A (A+ )

transforms the eigenfunction of H(+) (H(−)) into that of H(−)

(H(+)), using Eqs. (11), (13) and (14),

A  =  = K

(19)

and

A+ =

= K

(20)

Note that A  = 0. (Requirement (iii) is fulfilled.) 

The two partner Schrödinger equations are

H(+)  = [(A−B) ]  =  

K = 0, 1, 2, … (21)

and

H(−)  = [(A−B) ]  =   

K =1, 2, … (22)

where the rotational energy  =  = BJ(J + 1) + (A −
B)K2. (Requirement (ii) is fulfilled.) Therefore the

Hamiltonian HS is supersymmetric, and the bosonic H(+) and

the fermionic H(−) are the partner Hamiltonians to each other.

Since the difference between H and HS is simply a constant

term (see Eq. (8)), the Hamiltonian H for a rigid symmetric

top rotor has a supersymmetry.

Conclusion and Discussions

It is shown that the rotational motion of a rigid symmetric

top molecule has a supersymmertric nature in it. For each J

rotational state there exists a supersymmetry spectrum, a

non-degenerate zero energy ground state (K = 0) and pairs of

excited states (K and –K). It is due to the time-reversal

symmetry of rotation around the figure axis in the molecule-

fixed frame.

As mentioned earlier, we are not the first to observe that

there exists a supersymmetry in a rotating body. Last year

Rau suggested that there is a supersymmetric structure in the

free rotor on a plane. The free rotor (H = /2I) discussed in

Rau’s work24 is mathematically equivalent to the symmetric

top rotor (HS = (A−B) ) dealt in this work. He used the

time-reversal symmetry to construct the supercharges for the

free rotor as we do the same for the symmetric top rotor. But

we elaborate his idea in more detailed fashion to show the

supersymmetry of a symmetric top rotor.

Rau also presented the supersymmetry of the free particle

in one-dimension24 and he noted that the free particle system

( ) is equivalent to the free rotor

system (H = ). The only difference is that

for the free particle the parity operator is used instead of the

time-reversal operator. For the present symmetric top rotor

case, the Eq. (12) introduces two eigenfunctions (

and ) of the time-reversal related projection

operators  and . Inserting Eq. (3) into Eq. (12), one

obtains that

cos(Kϕ)  and sin(Kϕ). (23)

One sees that  has an even parity and  has

an odd parity. It is consistent with Eq. (13), which implies

that one can use the parity operator in place of the time-

reversal operator for symmetric top rotor. Therefore the

three systems, i.e., the current symmetric top rotor, the free

particle in one-dimension, and the free rotor on a plane, are

all equivalent. The supersymmetry of the free particle is

explicitly shown in Ref. 27 where the general involution

operator is introduced. For the free particle they used the

parity operator as the involution operator while we use the

time-reversal operator for the symmetric top rotor. Using the

reflection operator as the involution operator, mathemati-

cally similar works were reported.28,29

The rotational structure of a rigid symmetric top rotor has

been explicitly studied and is now a textbook subject. And

the supersymmetry is also a well-established concept.

Though this work does not suggest any new chemistry, the
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A B– Ĵz Π̂+ A B– Ĵz Π̂−
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importance of this work lies in finding a supersymmetry in a

non-trivial chemical system. (The supersymmetry related

work was once published in this journal by the author.30) We

believe that the search for supersymmetry in chemistry

should be pursued in the future.
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