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Figure 2. [HCl] and [CI] dependence of second—order rate constants

for dimerization of MoOCI- at 5°C. [MoOCl] = 3.10 x 10* M, [CI]
= 6.0M.

—d[MoOCI}") /dt =k, MoOC)2-)?
=k(HCI)'(CIT)'(MoOCY1)? (1)
From equation (1) k, = 2[HC1]*[CI]"". A straight line of Figure
2 gives k' to be negative first—order.function of [HCI]™* and
[CI], respectively.
The form of the rate equation (1) is consistent with the
following mechanism.

MoOCI}-+H,0 {—(—-‘ MoOCl, (H,0)+Cl~

MoOCI, (H,0)~+MoOCl~ & C1,Mo (0) - OH- Mo (0) Cl-+H*
(1)
T+H,0 £ CL,Mo(0) - OH - Mo (0)CL, (H,0)*+C1-
()
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t
1 +n,0fost, Cl,Mo (0) — (OH), = Mo (0) CL-+H*

Rate determining step is process of the formation of the aqua
complex by displacement of second water coordinated to
molybdenum of I. If K, and K, were small, then rate = k{I}
= kKK, [MoOCIZ)? [HCI}! [CY]* and &, = kK, K..

Although the final product is not isolated as crystals from
solutions we are considered that predominant compound in
6M hydrochloric acid is bis—(u-hydroxooxomolybdenum(V)),
Mo(0)-(OH),-Mo(O) known as paramagnetic dimer. There is
ample evidence for di-u~hydroxo dimeric M—(OH), - M with
certain transition metals.®

Mechanisms of these reactions deserve further attention
and should be the subject of future investigations.
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1,2-0-Isopropylidene—(S)-glyceraldehyde(1) and 1,2-0-
isopropylidene—(R)-glyceraldehyde(2) (Figure 1) have been ex-
tensively used as chiral starting materials for the synthesis
of optically active natural products.® The (R)-enantiomer,
1,2-O-isopropylidene~(R)-glyceraldehyde(2) is readily avail-
able from inexpensive natural D~mannitol.? However, the (S)-
enantiomer(1) was prepared from unnatural L-mannitol or L-
arabinose in several steps.® Recently, the synthesis of (S)-
enantiomer (1) from L-galactono-1,4-lactone* and L-tartaric
acid® has been reported. Now we wish to report an asymmetric
synthesis of (S)-enantiomer(1) from readily available allylic
alcohol (Scheme 1).

Sharpless’ (+)-tartrate-mediated asymmetric epoxida-
tion® of allyl alcohol afforded (S)-epoxyalcohol(3),” which was
directly used for the next step without further purification.
The crude epoxide(3) was treated with thiophenol and NaOH

(reflux, 3h) to give (S)-1-(phenylthio)-2,3-propanediol(4).
Recrystallization from petroleum ether gave the diol(4)® as a
white solid(71%). Isopropylidination of the diol(4) was effected
with 2,2-dimethoxypropane and D-camphorsulfonic acid to
give phenylthio acetonide(5)* in 95% vyield, which was
separated by flash chromatography using 20% ether-hexane
as eluents(Rf 0.62). The phenylthio compound(5) was oxidiz-
ed with m-chloroperoxybenzoic acid to give the sulfoxide(6)®
in 89% yield, which was separated by flash chromatography
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Scheme 1.

using 25% hexane-ether as eluents(Rf 0.26). The sulfoxide(6)
was subjected to Pummerer rearrangement® (Ac,0/NaOAc,
reflux, 11h) and purified on TLC plate (eluted with 25%
ether-hexane, Rf 0.37) to give the a—acetoxy sulfide(7)? in 81%
yield. Treatment of a-acetoxy sulfide(7) with K,CO,/MeOH
(reflux, 2h) afforded 2,2-dimethyl-1,3-dioxolane-4—carbox—
aldehyde, the (S)-enantiomer(1)%; bp45-47°C/15mmHg (lit.,2
bp40.5-41.5°C/11mmHg); [a]® -19.6°(c =0.34, MeOH). The
compound synthesized was identical in all respects (TLC, IR,
NMR, MS) with the compound reported in the literature.
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Various borane derivatives hydroborate alkenes and
alkynes to produce organoboranes.' However these reagents
also react fast with ketones.? Thus, in the presence of ketones,
selective hydroborations of alkenes and alkynes, to our best
‘knowledge, have never been achieved.

Recently, thexyl-2-butoxyborane, 1, was prepared from
the reaction of thexylborane (ThxBH,) with an equimolar
amount of 2-butanone (eq 1).

ThxBH CH.CH gCH ™
X + —_——
2 3727 0%, then RT \ s

"B nmr spectrum of 1 shows a doublet (Js.,=146 Hz) at
d=50.6 ppm, whereas ''B nmr chemical shift of ThxBH, is
known to be 24.0 ppm.* The ir spectrum of ThxBH,* shows
the bridge-hydrogen band at 1565 cm™ and the terminal
boron-hydrogen band at 2640 cm™'. However their spectrum
of 1 in THF shows no bridge hydrogen band, but only the
terminal boron-hydrogen band at 2413cm™. Apparently 1 ex-
ists as a monomeric species.

In the study of the reducing characteristics of 1 for
representative functional groups, we have found that this new
reagent reacted with aldehydes, terminal alkenes and alkynes



