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A diffusion-influenced pseudo-first order reversible reaction A + B ↔C + B is investigated by the molecular
dynamics (MD) simulation method. Theoretical finding that the temporal evolution of reactants [conditional
probabilities] in the reversible system can be expressed by the irreversible survival probability with an effective
rate parameter is confirmed even in the presence of solvent particles. We carry out molecular dynamics simu-
lations for both the irreversible and the reversible cases to evaluate the survival and the conditional probabilities
for each cases. When the resultant irreversible survival probability is inserted into the proposed relation, the
conditional probabilities given by the simulation are exactly reproduced. 

Introduction

Recently, a particular type of diffusion-influenced revers-
ible reaction A + B ↔ C + B has been studied by Gopich,
Kipriyanov, and Doktorov (GKD11 and GKD22) and by
Yang, Lee, and Shin (YLS).3 In GKD1, the many-particle
kinetics in the above reaction was shown to be reduced to a
single particle kinetics under certain conditions. Also they
found a relation between the reversible and the irreversible
descriptions for this reaction system, effectively reducing the
former problem to the latter for which exactly solvable mod-
els are available. A modified encounter theory of the par-
tially non-Markovian nature was applied in GKD2 to
investigate the pseudo-first-order reversible system, in
which [A] or [C] << [B], and the results were compared with
those of the renormalized kinetic theory of YLS. The same
relation between the reversible and irreversible systems
obtained by GKD1 was also presented by YLS for the
pseudo-first-order system in their kinetic theoretical formu-
lation which incorporates the many-body dynamical correla-
tion effects.

In this work, we carry out the molecular dynamics (MD)
simulation for both the pseudo-first-order reversible and
irreversible reaction systems and verify the proposed rela-
tion between them even in the presence of solvent particles
whose influence have not been considered before.

Theoretical Background

Theoretically interesting quantities in the reversible reac-
tion kinetics are conditional probabilities SA(t | A) and
SA(t | C) that a reactant be found in A species at time t if it
was A or C species at time zero, respectively. First, we dis-
cuss a simple probabilistic relation between those.4 When
the concentrations of A and C at time zero are [A]0 and [C]0,
the concentration of A at time t can be written in terms of the
conditional probabilities as follows: 

[A(t)] = SA(t | A)[A]0 + SA(t | C)[C]0. (1)

If [A]0 = [A]eq and [C]0 = [C]eq, where the subscript eq
denotes the equilibrium value, then [A(t)] must be [A]eq for
all t and Eq. (1) becomes

[A]eq = SA(t | A)[A]eq + SA(t | C)[C]eq. (2)

Dividing Eq. (2) by [A]eq, we obtain the generalized mas
action law (GMA) as follows:

1 = SA(t | A) + KeqSA(t | C), (3)

where  is the equilibrium
constant. Rearranging Eq. (1) by use of Eq. (3) and introd
ing the concentration deviation ξ(t) � ([A(t)]−[A]eq)/([A]0−
[A]eq), we get the relation 

(4)

where . This was also derived from ou
kinetic theory.3 

It was also found from the kinetic theory that the cond
tional probabilities can be predicted via the relation3

(5a)

(5b)

where  is the effective irreversible survival proba
bility of A. The expression of  can be obtaine
within the framework of the kinetic theory, if the bimolecu
lar reaction undergoes irreversibly with the effective equilib-
rium rate constant  where  and  ar
the equilibrium forward and reverse rate constants, resp
tively. In fact, Eq. (5b) can be directly obtained from E
(5a) by use of the GMA given by Eq. (3). These relations 
us that the reversible reaction kinetics could be predic
once one knows the information of the irreversible react
dynamics. In other words, the reverse reaction can 

Keq = kf
eq/kr

eq = C[ ]eq / A[ ]eq

ξ t( ) = SA t|A( )−SA t|C( ) = 1−
SA t|A( )
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change the reaction dynamics itself (including the pair
dynamics and the many-body competitive reaction for a
reactant) but merely introduces an alternative probabilistic
argument reflecting the various initial conditions induced by
the reverse reaction. When , the relations given in
Eqs. (5) yield the survival probability of the irreversible
reaction as it should be. We can see that these equations sat-
isfy the GMA given by Eq. (3). Inserting Eq. (5b) into Eq.
(4), one gets

ξ(t) = Sirr,eff(t). (6)

Despite the complication associated with the different
molecular histories embedded in the reversible reaction, it is
very interesting that there still exist such simple relations. 

All physical effects (potential of mean force, non-diffusive
motion, many-body competitive reaction, etc.) on the revers-
ible reaction kinetics are included in the expression of the
survival probability of irreversible reaction for the system.
Any tractable theory introduces some approximations
regarding the reactant dynamics in liquid and thus the
expressions of the irreversible survival probability can not
be exact for a real system. Therefore, we do not expect Eq.
(6) with the irreversible survival probability exactly pro-
duces the concentration deviation (or conditional probabili-
ties) of a real system or an MD simulation. However, the
purpose of this paper is to test whether the general relations,
Eqs. (5) and (6), are exact in the description of the many-
body effects associated with various initial conditions at dif-
ferent times induced by the reverse reactions. These should
be reflected in the expression of concentration deviation
(conditional probabilities). One of the available tests may be
to perform a model computer simulation for a system for
which the exact irreversible survival probability is known
and to compare the result with Eqs. (5) and (6). A more gen-
eral test would be to perform MD simulations for both irre-
versible and reversible reactions and to confirm the
exactness of those relations by comparing the irreversible
survival probability and the concentration deviation of the
reversible reaction obtained by the simulation. In this paper
we choose the latter test.

 
MD Simulation

Molecular dynamics simulations have been carried out for
diffusion-influenced irreversible bimolecular and fluores-
cence quenching reactions.5,6 We extend a similar MD simu-
lation method to the pseudo-first-order reversible reaction of
type A + B ↔ C + B in this work. Since the main features of
diffusion-influenced reactions can be quite well character-
ized by the hard sphere model, we also choose this model for
the description of reactant and solvent molecules in liquid. A
canonical ensemble of N (= 512) identical hard spheres in a
cubic cell with the reduced volume 1 is chosen for our MD
simulations. The value of the reduced diameter b of a hard
sphere is taken to be b = 0.114 to get the number density
value of Nb3 = 0.76 which corresponds to a normal liquid
density. 

Initial configuration was randomly chosen avoiding th
overlapping among the hard spheres and the initial veloci
are chosen from the Maxwell-Boltzmann distribution. Th
starting configuration of the system is brought to an equil
rium state by running the MD. The equations of motion f
the hard spheres must be solved in a way which is qua
tively different from the MD for a continuous potential. Th
standard method for this is well known.7 The ordinary peri-
odic boundary condition in the x-, y-, and z-directions a
the minimum image convention are used. After the equ
bration, we run the MD and generate trajectories of all pa
cles, which are stored at every collision time for furth
analyses up to the total collision number of 200,000. Fr
stored configurations of all particles, we analyze the react
events. For the pseudo-first-order case, every A or C reactant
is assumed to be independent of each other. Then we 
sider only one tagged reactant of these species in the sim
tion cell. 

We first consider the irreversible reaction case. The qu
tity to be obtained from the simulation is the irreversible s
vival probability Sirr (t) that a reactant survives as A species
when that molecule was initially A species surrounded by a
equilibrium distribution of B’s. To prepare the ensemble
composed of the microscopic states associated with 
macroscopic initial state, we choose the first configurati
stored from the trajectory calculation. For that configuratio
among N particles, we randomly select one and tag the s
cies label A on it. Among the remaining N−1 particles, NB

particles were selected randomly and labeled as B. The rest
of the N−1−NB molecules make up the solvent. By this labe
ing of solute molecules to that configuration, we get one
the microscopic reaction states. To save the CPU time for
trajectory calculation, we prepare other 39 initial reacti
states from that configuration varying the random select
of the B’s to construct the independent 40 ensembles for 
selected A molecule. Again, these random selection of the 
configurations of B’s are repeated for other 39 random sele
tions of an A molecule. Then we get the independent 1,6
microscopic reaction states from a species-irrelevant con
uration. With the time interval of 5 collisions in the trajec
tory calculation, we choose 100 species-irrelevant confi
rations and repeat the above procedure for every config
tion to obtain the total NA

0 (=160,000) microscopic initial
reaction states. Since only one A molecule exists in a given
microscopic initial reaction state, NA

0 can be thought to be
the number of A’s, which are independent of each other, 
the macroscopic initial equilibrium state.

For every microscopic initial reaction state, we check t
reaction events along the trajectory of the initial speci
irrelevant configuration. When the colliding molecules a
labeled to be A and B species in the ith microscopic initial
reaction state, they react with the probability wf. If a real
value less than wf  is generated by a random number gene
tor, the reaction occurs and the survival time is stored aτi

for further analysis of the survival probability. This state 
excluded in the reaction-checking subroutine for the sub
quent time evolution of the trajectory. Here, the time elaps

Keq ∞→
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between the creation of the molecule A and its disappearance
upon reaction is called the survival time of the A molecule. If
there is no reaction until the end of the trajectory, we set the
survival time of that initial state to be infinity. After finishing
the check of reaction events, the number of unreacted mole-
cules of A in the ensemble at time t is evaluated by5

(7)

where θ(t) is the step function. With this quantity, the sur-
vival probability of the irreversible reaction can be obtained,
in practice for a finite number of initial states, as

(8)

Now we consider the reversible reaction. In this case, we
obtain the conditional probability  that a reactant be
A species at time t if it was C species at time zero. In the sim-
ulation, the procedure of the preparation of the microscopic
initial reaction states is the same as that of the irreversible
reaction case except that the species of the tagged molecule
in every initial state is not A but C. Contrary to the irrevers-
ible case, we should trace the trajectory by the end for all
microscopic initial reaction states since the forward and the
reverse reactions can occur consecutively. Along the trajec-
tory evolution, we check the reaction event. When the col-
liding molecular pair is A (or C) and B in the ith microscopic
initial reaction state, they will react with the probability wf

(or wr). If the reaction occurs, the time [elapsed between the
preparation of the initial state and the reaction] and the spe-
cies of the tagged molecule after the reaction are stored into
TIME(i, j) and SPEC(i, j) where the indices i and j denote the
ith ensemble and the jth reaction, respectively. These values
of TIME and SPEC variables stored will be used in the fur-
ther analysis for the conditional probability. This procedure
is repeated until the end of the trajectory. At the end of the

trajectory, we set TIME(i, Ni + 1) = � and SPEC(i, Ni + 1)
= SPEC(i, Ni − 1) where Ni denotes the number of reaction
of the tagged molecule in the ith ensemble. To remove the
outer boundary effect in time, the trajectory calculatio
should be carried out for a sufficiently long time. 

After finishing the check of reaction events for all micro
scopic initial reaction states, we evaluate the number oA
molecules in the ensemble at time t by the values of SPEC
and TIME stored from the following relation: 

NA(t | C) ≡

(9)

With this quantity, the conditional probability SA(t | C) can
be obtained as

(10)

Results and Discussion

The relations given by Eqs. (5) and (6) are closely rela
to each other via the GMA and thus we confine our disc
sion in this paper to the conditional probability 
First, we perform the molecular dynamic simulation for th
irreversible reaction system with the reaction probabil

. We consider the number of B’s, , which
corresponds to the moderately high concentration of B spe-
cies, . For convenience, the reaction distan
σ is assumed to be equivalent to the reduced hard sp
diameter b. The time dependence of the irreversible surviv
probability  is displayed by the solid line in
Figure 1. The time is in the reduced unit,  (kB is the
Boltzmann constant, T the absolute temperature, and m
molecular mass).

To verify the relation of Eq. (5b), we should perform th
simulation for the reversible reaction system with the sum
the equilibrium rate constants  corresponding to t
above irreversible simulation. In the present simulation, 
intrinsic reactivities are characterized by the forward a
reverse reaction probabilities, wf and wr. Then the equilib-
rium rate constant  (or ) will be the product of th
reaction probability wf (or wr) and the equilibrium collision
frequency. So, the equilibrium rate constant is linearly p
portional to the reaction probability. We choose two sets
the reaction probabilities, (a) wf = wr = 0.5 and (b) wf = 0.2
and wr = 0.8, which satisfy the condition wf + wr = 1 which
corresponds to the above irreversible reaction simulati
The equilibrium constants  for these cases are (a) 1 
(b) 0.25 to give the equilibrium values of the condition
probability  of (a) 0.5 and (b) 0.8, respectively. Wit
these values, we plot the concentration deviation ξ = 1−
SA(t | C)/  in Figure 1 and compare those with the irr
versible survival probability obtained earlier. The coinc
dence between the reversible and the irreversible kinetic

NA t( )
NA

0

i 1=

∑≡ θ τι t–( ),

Sirr t( ) = 
NA t( )

NA
0

-------------.

SA t|C( )

NA
0

i 1=

∑
Ni

j 1=

∑ { θ t TIME i,j( )–[ ]

.θ[TIME i,j+1( )−t]} δSPEC i,j( ),A.

SA t|C( ) = 
NA t|C( )

NA
0

-------------------.

SA t|C( )

wf = 1 NB = 54

4πσ3NB = 1.0

Sirr t; wf = 1( )
m/kBT

kf
eq kr

eq+

kf
eq kr

eq

Keq

SA
eq

SA
eqFigure 1. Irreversible survival probability when wf = 1 and the

concentration deviation of reversible reaction with the values of (a)
wf = wr = 0.5 (•••) and (b) wf = 0.2 and wr = 0.8 (×××). The time is
in the reduced unit of .m/kBT
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perfect for two sets of the reactivity of reversible reaction.
From this comparison, we can conclude that the relations
given by Eqs. (5) and (6) are essentially exact in the descrip-
tion of the reverse reaction even in the presence of solvent
particles. 
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