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Quantitative Structure-Activity Relationship (QSAR) have been established of 57 fluorovinyloxyacetamides
compounds to correlate and predictE@lues. Genetic algorithm (GA) and multiple linear regression analy-

sis were used to select the descriptors and to generate the equations that relate the structural features to the bio-
logical activities. This equation consists of three descriptors calculated from the molecular structures with
molecular mechanics and quantum-chemical methods. The results of MLR and GA show that dipole moment

of z-axis, radius of gyration and logP play an important role in growth inhibition of barnyard grass.
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Introduction tion (GFA)algorithm*'® GFA can not only automatically
select the optimum number of descriptors in regression anal-
Oxyacetamide has been developed as a herbicide, whigfsis but also construct Multiple Linear Regression (MLR)
shows good herbicidal activity for annual weeds throughmodels through the use of linear, higher order polynomials,
inhibition of cell division and amino acid biosynthée'sis. splines and gaussians. The GFA algorithm method was used
Especially, the excellent selectivity between crop (rice) ando select the optimum number of descriptors for use in
weeds (barnyard grass), an important weed in paddy fieldsegression analysis. The GFA algorithm could be a useful
is a merit of oxyacetamide herbicitldo exploit a new and technique for searching the large probability space with a
highly active herbicide, fluorovinyloxyacetamides, which large number of descriptors for a small number of mole-
was introduced fluorovinyl group into oxyacetamide, werecules.
synthesized and evaluated their herbicidal activities. In this The purpose of this research was to determine predictive
research, we tried to describe the synthetic method an@SAR model¥'° by analysis of training set containing 57
QSAR study of fluorovinyloxyacetamides. molecules. If the models are reasonable, it is possible to pre-
Synthesis of fluorovinyloxyacetamidésis as follows  dict biological activity of non-tested molecules. Finally, the
(Figure 1). The chloroacetamides Were prepared from the successful models of QSAR certainly decrease the number
substitution reaction of amineg)(with chloroacetyl chlo- of compounds to be synthesized, by making it possible to
ride ) using sodium hydroxide as a base in THF. The reacselect the most promising compounds.
tion of (e) with sodium acetate in DMF gave acetatdsirg
high yields. The hydroxyacetamiddy (vere obtained from Methods
base catalyzed hydrolysis a)( On the other hand, the vinyl
fluorides €) were provided by the Wittig reaction of trifluoro- ~ Experimental; Chemicals 1-Piperidino-2-[E)-1,3,3,3-
methyl ketonesh) with dibromodifluoromethane, triphenyl- tetrafluoro-2-(3-methylphenyl)-1-propenyloxy]-1-ethanone
phosphine in THF. Finally, addition-elimination reaction of (compound 1): A solution of 286 mg (2 mmol) Nf2-
(b) with (c) in the basic condition gave the fluorovinyloxy- hydroxyacetylpiperidine in 10 mL THF was added to 444
acetamidesd). The structures of new fluorovinyloxyacet- mg (2 mmol) of 1,1,3,3,3-pentafluoro-2-(3-methylphenyl)-
amides 4) are summarized in Table 1. 1-propene at room temperature. The reaction mixture was
Quantitative Structure-Activity Relationship (QSAR)is treated with 0.2 mL of 10 M-NaOH solution and stirred for
a powerful method for the design of bioactive compounds30 min. The mixture was washed with 10 mL of water and
and the prediction of corresponding activity with physicalextracted with ethyl acetate. The extract was dried over
and chemical properties. Usually there are two major approanhydrous MgS@and concentrated under reduced pressure.
aches to analyze QSAR data : i) the property (or activity) ofThe 310 mg (90%) of compound 1 (BnandZ isomeric
a series of compounds is expressed as a multiple lineanixtures on silica gel) was extracted with mixture of sol-
regression of descriptors, and ii) the non-linear regressioments (ethyl acetatehexane = 1 : 2). The separation of geo-
method represents the property (or activity) with artificial metrical isomers by silica gel chromatography (ethyl acetate/
neural network (ANN}?2 ANN is an information-process- n-hexane =1 : 4) was provided by 230 mgesisomer. oil;
ing paradigm inspired by the densely interconnected, pardH-NMR (300 MHz; CDC}, TMS) &: 7.31-7.04 (m, 4H),
llel structure of the mammalian brain processes information4.78 (E) 4.66 (2) (s, 2H), 3.64-3.03 (m, 4H), 2.37 (s, 3H),
This study was based on a Genetic Function Approximai.74-1.38 (m, 6H)*F-NMR (200 MHz; CDCJ, CFCk) J:
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Figure 1. Synthesis of fluorovinyloxyacetamides.

-57.83 (d, 3F), -82.24 (g, 1F); MS m/z (rel. int.) 345 (26), ues were estimated by fitting data to sigmoidal type function
126 (71), 98 (70), 84 (100). (1) because the experiments were performed in a range of
The other compounds (2 to 57) were obtained about 70 tooncentration (1.000, 0.2500, 0.0625, 0.0156, 0.0040 kg/ha)
90% vyields from the same reaction condition using correand activities were represented by 10 percent unit. In the
sponding hydroxyacetamidéds) @nd vinyl fluorides ). equation (1), the initial and final value were fixed. Activities
Computations; Data Construction A series of 57 fluoro- were demonstrated to 100 percent, and other variables were
vinyloxyacetamides derivatives was used in this work (Tablechanged to fit. The concentration andsiB@lue were con-
1). These molecules consisted of mixtur&@ndZ isomer,  verted by -log function to fit scale.
but the energy of all molecules was minimizedasomer A_A
- . . . 1 — Mo
configuration. A grid search procedure was performed with Y = T T
core structure (RCHs, R:=phenyl, R=phenyl) to identify 1+e
their lowest energy conformation. The _conformatlonal energy (Ax: initial value = 0, A: final value = 100;: centerdx
of each conformer was generated by increasing the torsmngtllﬂe const)
angleyn andyr by 30 degrees. Geometry optimization was '
performed to obtain fixed core structure using the results of Selection of the Descriptors and the Activity Descrip-
this conformational search (the minimum energy conformadion. It is necessary to construct a numerical descriptors of a
tions have 30-130angle range of/x and 150-20Dangle  set of molecule in order to build QSAR models. A descriptor
range ofyr) by ab initio calculation with 4-31G basis set of can be a quantitative property that depends on the structure
Gaussian 9grogram (see Figure 2 After geometry opti-  of molecule. In this study, all 118 descriptors such as topo-
mization, functional groups were added to the core structurkngical, spatial, electronic, quantum mechanical, and ther-
and the full geometry optimization was performed by Merckmodynamic descriptors were calculated by Cefiys®gram.
Molecular Force Field (MMFE}2?2 method. After minimi- ~ Genetic Function Approximation (GFA) technique was uti-
zation, all molecules were aligned in the orientation that theyized to select descriptors and to generate different QSAR
were assumed to bind to the putative receptor. The methadodels from various descriptors. GFA technique began with
for performing the alignment was Maximum Common Suba population of 100 random models and 10000 iterations to
Group (MCSGY??* The MCSG was carried out rigid fit to evolution. The descriptors were selected by a few steps
superimpose each structure to overlays the shape referengsing GFA method: i) 118 descriptors were divided by four
compound (compound 45). or five groups which were randomly selected, ii) GFA
The activity was expressed in terms of 50%-growth-inhi-allowed the selection of some descriptor that is frequently
bition concentration (Efg) of barnyard grass. The Efval- used from each group of descriptors. Repeating this step,

+ A @)
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Table 1 Structures of Fluorovinyloxyacetamides in Training Set
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R1 F
¢l
N R
R2/ 0 X
02
o] CF 4
No. R R, R3 No. R R> R3
1 -(CHy)s- 3-CHs-CsH4 31 4-CHO-CsHq CoHs CeHs
2 -(CH)s- 4-C,Hs-CeHa 32 3-CR-CsH, CoHs 4-CHy-CoHa
3 -(CHy)s- 3,5-Cb-CeHs 33 4-Cl-GH4 CoHs 4-CHs-CgH4
4 -CH(CHb)(CHo)s 4-CHs-CgH4 34 4-CHO-CsHq n-CzH; 4-CHs-CgH4
5 -CH(GHs)(CHp)s 4-CHs-CgH4 35 GHs i-CsH7 3,5-(CH;)-CeHs
6 -CH(CH)(CH,)sCH(CHs)- 3-Cl-GsHa 36 GHs i-CsH7 4-CH;0-CoHa
7 -(CHy)e- 3-CHs-CgH4 37 GHs i-CsH; 4-CHs0-CoHa
8 -(CH)e- 4-C,Hs-CoHa 38 3-CH-CeHa i-CsH7 CeHs
9 -(CHy)e- 3,4-(CH)>-CeHs 39 3-CH-CeHa i-CsH7 4-CoHs-CsHa
10 -(CHY)e- 3,5-(CH)>-CeH3 40 3-CH-CeHa i-CsH; 3-CHsO-CsHa
11 -(CH)e- 3-CH;O-CoHs4 41 3-CHy-CeHa i-CsH7 3-F-GsHa
12 -(CH)e- 4-Cl-CeH4 42 3-CHO-CeHs i-CsH7 CeHs
13 GHs n-C4Ho 4-CHs-CeH4 43 3-CHO-CGsHa i-CaH7 4-CHs-CgH4
14 GHs CHs CsHs 44 4-CHO-CsHa i-CsH7 4-CHs-CgH4
15 GHs CHs 3-CHs-CsH4 45 4-CH0O-CsHa i-CsH7 4-CH;0-CoHs
16 GHs CHs 4-CHs-CeH4 46 4-CHO-CsH4 i-CaH7 4-F-GsHa
17 GHs CHs 4-CoHs-CsHa 47 4-F-GH,4 i-CsH7 3-CR-CeHs
18 GHs CHs 4-CHs0-CeHa 48 4-F-GH,4 i-CsH7 4-F-GeHa
19 GsHs CHs 3-CR-CeHa 49 3-Cl-GH4 i-CaH7 4-F-GsHa
20 GHs CHs 3-F-GsH4 50 4-CH-CgH4 CHs CeHs
21 GHs CHs 4-Cl-CeH4 51 3,4-(CH)>-CeHs CHs 4-CHs-CgH4
22 4-CHO-CeH4 CHs 3-CHs-CeH4 52 3-Cl-GH4 CHs 3,4-(CHy)2-CeHs
23 4-CHO-CeH4 CHs 3,4-(CH)2-CeHs 53 3-Cl-GHq CHs 4-CHs-CeHa
24 4-CHO-CsHq CHs 3,4-OCHO-CsH3 54 3-Cl-GHa CHs 4-CH;0-CHa
25 4-F-GHa4 CHs CeHs 55 4-Cl-GH4 CHs CeHs
26 4-F-GH4 CHs 4-CHs-CgH4 56 4-Cl-GH4 CHs 3-CH;O-CeHa
27 4-F-GH,4 CHs 4-CH;0O-CHs 57 4-Cl-GH4 CHs 4-CH;0-CHa
28 2,4-K-CsHz CHs 3-Cl-CeH4
29 2,4-Ch-CgH3 CHs 4-F-GsHa
30 GHs CoHs 4-F-GHa
finally 16 descriptors (Table 2) were selected. These descrip-
tors have high divergency and good representation of biolog-
R ical activity.
Ra Results and Discussion
i
A In this study, we screened 16 preselected descriptors for 57
S~ fluorovinyloxyacetamides compounds using GFA method.
r il Finally, we generated 100 QSAR equations that consist of
Ii % . four descriptors among QSAR random models. As a rule of
- thumb?® data set should be approximately 5 times more than
R, s i ' the number of selected descriptors for good results. The
N, g results of the best QSAR model using 1-4 descriptors are

Figure 2. Geometry optimized core structure.

given in Table 3. Regression models are all significapt at
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Table 2 List of Descriptors Used in This Study

Abbreviation Definition
Dipole-X, Y, Z X, Y, Z component of the dipole moment
LUMO-MOPAC The energy of Lowest Unoccupied Molecular Orbital (LUMO) by MOPAC AML1 calculation
HOMO-MOPAC The energy of Highest Occupied Molecular Orbital (HOMO) by MOPAC AM1 calculation
RadOfGyration Radius of Gyration
PMI-X, Y, Z X, Y, Z component of principle moment of inertia
logP Calculated LogP (the partition coefficient) by Desolvation free energy of water (Fh20) and octanol (Foct)
Vm Molecular volume
Foct Desolvation free energy of octanol
ShapeRMS RMS value to shape reference
Dipole-MOPAC Dipole moment by MOPAC AM1 calculation
Density Density
MolRef Molar refractivity by Ghose and Crippen calculation

Table 3. The best QSAR equation using 1-4 descriptors and their regression statistics

No. of descriptor Equation 2r Iy SE F p-value

1 5.415-0.0109 (Vm) 0.627 0.598 0.190 92.357 2.27E-13

2 5.477-0.355 (logP) 0.810 0.789 0.137 115.021 3.41E-20
-0.545 (RadOfGyration)

3 5.365-0.350 (logP) 0.853 0.832 0.121 102.684 4.52E-22
-0.524(RadOfGyration)
+0.0577 (Dipole-Z)

4 5.600-0.341 (logP) 0.859 0.829 0.120 79.317 1.71E-21
-0.560 (RadOfGyration)

+0.0581 (Dipole-Z)
-0.122 (ShapeRMS)

r?: correlation coefficient?gy: cross-validatedfr E: standard error, F: Fisher test value, p-valule: significance level

value <0.001 using the F statistics. The p-value is theurve of descriptor usage versus crossover operation number
observed significance probability of obtaining a greater Freaches a plateau after about 1000 crossovers in the GFA
value by chance alone if a model fits no better than the oveprocedure which indicate a convergent optimization of
all response mean. The lower the p-value, the more signifiQSAR equations. The most often used descriptor is clearly
cant the QSAR equation. As a result of the lowest p-valudogP, which is found in about 30% of all QSAR models. It is
and the highest cross-validatégan optimum fit was found considered that logP played an important role on the biologi-
to require three descriptors. This equation produces the besal activity of molecule that might be concerned with herbi-
description for the activity of the fluorovinyloxyacetamides. cides distribution. That is, herbicides should be solved in
Activity = 5.365 water _environment to pe_netrate into p_I_ant. Generally, _LogP
value is inversely proportional to solubility of water environ-
~0.350(Log P) 2) her descriptors, radius of gyration and dipole-Z in
—0.524 (RadOfGyration) ment. Other descriptors, gy nd dipole-Z
+0.0577 (Dipole-2) equation (2), were rarely s_elected in the elite p_opulatlpn.
However, they were effective descriptors combined with
(r*=0.853, Cross-validated >90.832, F=102.684, p- logP in equation (2). Radius of gyration confirms the signifi-
value=4.52E-22) cance of steric hinderance caused by the size of functional
The good relationship between the observed and the GFgroups (R, R, Rs). Dipole-Z accounts for dipole-dipole
predicted -logEGs for training set is shown in Table 4 and interaction of functional group:RThey may be related to
Figure 3. The residual of those values was 0.003-0.284 artnind between drug and receptor because drug size and
mean residual is 0.09095. The test set (Table 5) which isharge distributions are essential factors to bind active site of
composed of 14 compounds were used to prove predictioreceptor molecule.
ability of this equation. The prediction results of test set The multicolinearity of three descriptors in equation (2) is
using equation (2) are depicted in Figure 4 and Table Gepresented by variance inflation factor (VIF). The effect of
These have also small error value that represents the preditiulticolinearity is to inflate the variance of the least squares
tion ability of final QSAR equation. estimator and possibly any predictions made, and also to
The Figure 5 represents the descriptors selected in the elitestrict the generality and applicability of the QSAR model.
population of this models in the GFA calculation. EachVIF value is calculated from 1/%;twhere # is the multiple
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Table 4. Observed and GFA predicted -logdg@r Training Set
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Table 5 Structures of Fluorovinyloxyacetamides in Test Set

Observed GFA

Observed GFA

No. Activity prgdic-rec;';Aual No. Activity prgdic- reC;:;Aual

(-logEGsg) tion (-logeGsg) tion
1 2114 2132 -0.019 31 1937 2.009 -0.072
2 1738 1.798 -0.061 32 1259 1311 -0.052
3 1.674 1901 -0.22} 33 1517 1552 -0.035
4 1574 1888 -0315 34 1360 1.345 0.015
5 1.807 1.706 0.10L 35 1.309 1.553 -0.244
6 1738 1.762 -0.02¢4 36 1860 1.796  0.065
7 2102 2119 -0.01y 37 1.608 1.457 0.151
8 1867 1746 0.115 38 2036 1830 0.205
9 1992 1954 0.038 39 1.070 1.164 -0.093
10 1910 1936 0.026 40 1470 1.537 -0.067
11 2036 2111 -0.07p 41 1673 1.735 -0.062
12 2066 2101 -0.03p 42 1806 1.925 -0.019
13 1614 1862 -0.24f 43 1581 1524  0.057
14 2408 2470 -0.062 44 1574 1449 0.125
15 2366 2153 0.218 45 1259 1.336 -0.078
16 2398 2188 0.21p 46 1618 1.643 -0.035
17 1860 1.880 -0.02p 47 1.360 1.304 0.056
18 1937 1914 0.028 48 1896 1.749  0.147
19 2.046 1949 0.098 49 1672 1577  0.095
20 2387 2400 -0.018 50 2143 2207 -0.063
21 2169 2183 -0.01B 51 1672 1.813 -0.141
22 2030 1866 0.16p 52 1579 1569 0.010
23 1737 1.746 -0.00p 53 1548 1.406  0.142
24 189 2014 -0.118 54 1670 1.708 -0.038
25 2387 2238 0.15p 55 1.988 2.006 -0.018
26 1941 1924 0.01fy 56 1691 1.774 -0.083
27 1763 1938 -0.17p 57 1670 1.653  0.017
28 2.034 1942 0.092
29 1.89% 1719 0.176
30 2209 2167 0.04p
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4 4-F-GH4 CHs 3-CHs-CH4
5 4-F-GHs CHs 3,5-(CH)2-CeHs
6 4-F-GH, CHs 3-CHsO-CGeH4
7 GsHs C,Hs 4-CR-CgsHgy
8 4-CHy-CeHa CoHs 4-F-GHa
9  4-CHO-GH, CoHs 4-F-GHa
10 2-Cl-GH4 CoHs 4-CHs-CgH4
11 3-C|-C5H4 C2H5 CGHS

12 4-C|-C5H4 C2H5 CGHS

13 GHs i-CsH7 4-CHs-CgH,4
14 GHs i-CsH7 3,4-OCHO-CsH4
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Figure 4. Activity values predicted by GFA Model of Test Set.

Table 6. Observed and GFA Predicted -logsfor Test Set

Observed GFA Observed GFA GFA
No. Activity pr?dic'resi dual No. Activity pr_edic- residual
(-logEGsg) tion (-logEGsg) tion
1 1641 1675 -0034 8 1836 1821 0.015
2 1924 1862 0.062 9 1830 1854 -0.024
3 1807 1.761 0.046 10 1520 1678 -0.158
4 1971 1879 0.092 11 1973 1877 0.096
5 1653 1.713 -0.060 12 1775 1809 -0.034
6 1908 1.938 -0.030 13 1790 1.743 0.047
7 1787 1749 0.038 14 1896 1858 0.038

tion of descriptors. In this model, the VIF value of these
descriptors are 1.0155 (dipole-Z), 1.0292 (radius of gyra-
Figure 3. Activity values predicted by GFA Model of Training Set. tion), 1.0229 (logP). Therefore, these descriptors showed no
intercorrelation.
Relations between descriptors and activity can be seen
correlation coefficient of one descriptor’s effect regressed orfrom Figure 6. Solid and Dot lines in Figure 6 depict respec-
the remaining molecular descriptors. If VIF value is largertively regression line and 95% confidence level of regression
than 5, information of descriptors can be hidden by correlaline. The molecules 12, 27, 45, 54 show great deviation in
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correlation between logP and -logis@Figure 6(a)). On the
other hands, these molecules show good correlations be
ween RadOfGyration and -loge6r dipole-Z and -logE&g
(Figure 6(b) and (c)). In the case of the molecules 14, 22, 3.
39, they express great deviation with RadOfGyration (Figure
6(b)) while they express good correlations with logP (Figure
6(a)). This correlation patterns represent that these descri
tors can describe biological activities effectively.

According to these descriptors, this fluorovinyloxyacet-
amide herbicides have important characteristics such &
great plant penetration ability and molecular size. The highly
active molecules might have smaller logP, smaller radius ¢
gyration and larger dipole moment than less active mole
cules.

Further analysis of this data indicated that simple calcula
tion of logP, radius of gyration, dipole moment might predict
the biological activity of this herbicides.

Acknowledgment This work was supported by the Korea
Research Foundation (1997-012-D00035).

References

1. Matsumoto, HProceedings I(A), Weed and Environmen-
tal Impact; The 17th Asian-Pacific Weed Science Societ
Conference1999 39.

2. Ito, S.; Kamochi, A.; Sawada, K.; Goto, T.; Yasuio-
ceedings, The 12th Asian-Pacific Weed Science Socie!
Conferencel989 255.

3. Kim, B. T.; Park, N. K.; Hong, K. S.; Park, J. E.; Kwon, Y.
W. PCT/KR 99/00116

4. Kim, B. T.; Park, N. K.; Hong, K. S.; Park, J.KR Pat.
98-8750

5. Kim, B. T.; Park, N. K.; Hong, K. S.; Kwon, Y. WR
Pat. 98-8751

6. Hansch, C.; Fujita, T. Am. Chem. Sot964 86, 1616.

7. Fujita, T.QSAR and Drug Design; New Developments11.
and ApplicationsElsevier: Amsterdam, 1995.

8. Lee, D. L.; Kollman, P. A.; Marsh, F. J.; Wolff, M. E.
Med. Chem1977, 20, 1139.

9. Hugo Kubinyi3D QSAR in Drug Design: Theory, Meth- 13.

ods and ApplicationE£ESCOM: Leiden, 1993.

Zhou, Y.-X.; Xu, L.; Wu, Y.-p.; Liu, B.-lJ. Chem. Intell,

12.

10. 14.

Bull. Korean Chem280¢t.Vol. 22, No. 4 393

2.50

2.25

2.00 -

1.75 A

-logEC5q

1.50

1.25 -

2.00

1.75 -

-logEC5¢

1.50 1

1.25 4

(D) 39
1.00 4 : - : , ,
400 425 450 475 500 525 550 575

RadOfGyration

o
W
O
]
(@]
o
1.50 L LI
® o
1.25 1 45 32
- (© 39
100 e :
3 -2 -1 0 1 2
Dipole-Z

Figure 6. Plots of -logEGovs. (a) logP, (b) radius of gyration and
(c) dipole-Z.

Lab. Sys1999 45, 95.

Hou, T. J.; Wang, J. M.; Liao, N.; Xu, X.J.Chem. Inf.
Comput Sci1999 39, 775.

Gasteiger, J.; ZupanAhgew. Chem., Int. Ed. Engl993
32, 503.

David, J.; David, W. SBioorg. Med. Chem. Lett992 2,
213.

Leardi, R.; Boggia, R.; Terrile, MJ. Chemomertrics



394 Bull. Korean Chem. So2001, Vol. 22, No. 4

15.

16.
17.
18.
19.
20.

1992 6, 267.

David, R.; Hofinger, A. JJ. Chem. Inf. Comput. Sci.
1994 34, 854.

Randic, MJ. Am. Chem. Sot975 97, 6609.

Clare, B. WJ. Med. Cheml998 41, 3845. 21.
Baumann, KJ. Anal. Chem1999 18, 36. 22.

Sweet, R. M.; Eisenberg, D.Mol. Biol.1983 171, 479.

Gaussian 94, Revision Q.EBrisch, M. J.; Trucks, G. W.; 23.

Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M.

A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Mont-24.
gomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; 25.

Zakrzewski, V. G.; Ortiz, J. V., Foresman, J. B.;

Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challa- 26.

combe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M.

Doo Ho Cho et al.

W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin,
R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.;
Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J.
A. Gaussian, Inc.: Pittsburgh, PA, 1995.

Halgren, T. AJ. Comput. Cheni.996 17, 490.

Gundertofte, K.; Liljefors, T.; Norrby, P. O.; Pettersson, I.
J. Comput. Cheni996 17, 429.

Crandell, C. W.; Smith, D. H.. Chem. Inf. Comput. Sci.
1983,23, 186.

Brint, A. T.; Willett, P.J. Mol. Graphicsl987, 5, 200.
Cerius2 QSAR+ (version 3;8Molecular Simulations
Inc.: 1998.

Topliss, J. G.; Edwards, R. P.Med. Chem1979 22,
1238.




