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Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR
(quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency
for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM)
descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important
factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-
fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 =
0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR.
The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity
Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically
reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-
based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic
contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group
around ring B may enhance the inhibitory activity. 
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Introduction

Prostaglandin (PG),1 are important mediators of various
physiological processes such as regulation of gastrointe-
stinal, renal and blood homeostasis. On the other hand, they
also act as potent mediator of inflammation and fever. They
acts as a biological mediator to produce signals in the human
body that in turn induce pain and inflammation. There are
three forms of prostaglandin E synthase (PGES), namely,
microsomal prostaglandin E2 synthase-1 (mPGES-1), micro-
somal prostaglandin E2 synthase-2 (mPGES-2) and cytosolic
PGES. The pathway linkage preference of mPGES-1,
mPGES-2 and cPGES is, both COX-1 and COX-2 respec-
tively.2 The mPGES-1 is an important enzyme because it
catalyzes the conversion of prostaglandin endoperoxide
(PG) H2 to PGE2. PGE2 in turn controls biological activities
such as relaxation and contraction of muscles. There are
several reported compounds which act as inhibitors of
mPGES-1.3,4 Recently, a series of MK886 compounds also
showed selectivity and higher activity against the inducible
mPGES-1 with the lowest IC50 value found being 3 nM.5

The pharmacophore based QSAR,6-9 QM based QSAR10,11

and 3D QSAR12-17 shown good predictivity for other data-
sets. The current study deals the molecular modeling of
MK886 analogues with mPGES-1 to access further possi-
bility of improved ligands. Specifically, QM-based QSAR,
pharmacophore-based QSAR and 3D-QSAR (CoMFA and
CoMSIA)18-20 have been performed to study MK886 series.

Material and Methods

Data sets. Thirty-two MK886 derivatives5 were taken

from literature with their biological activities in terms of
IC50 values. The IC50 values, i.e., the concentration (µM) of
inhibitor that produces 50% inhibition of mPGES-1 were
converted into pIC50 (-logIC50) as reported in Table 1. 

Quantum mechanical QSAR. The quantum mechanical
descriptors like chemical potential (μ),21 electrophilicity
index (ω),9,22 electrophilic frontier densities,23 molar refracti-
vity (MR)24,25 and solvent assessable surface area (SASA)26

have been considered. Recently Parr et al. define the
electronegativity21 and chemical potential as equation (1),

(1)

Where E is total energy, N is number of electrons of the
chemical species and ν(r) is external potential. According to
the Koopman’s theorem27 the operational definitions of
electro negativity or chemical potential may be given as
equation (2)

(2)

Fukui et al. proposed the frontier electron density23 for the
electrophilic attack at the rth atom in molecule  which
may be written as equation (3)

 (3)

Where Δλis energy difference between the two orbital in
units of β,  and  are the coefficient of LCAO MO at
rth atom corresponding to the highest and next orbital
respectively, D is constant which determines the degree of
contribution of lower MO to the frontier electron density. 
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The molar refractivity is a constitutive-additive property
that is calculated by the Lorenz-Lorentz formula24,25 as given
in equation (4)

 

(4)

Where MW is the molecular weight, n is the refraction index
and r the density, and its value depends only of the wave
longitude of the light used to measure the refraction index.

Solvent assessable surface area (SASA). The molecular
surface is defined in COSMO26 as the sum of overlapping
van der Waals radii, , about each atom, α. The solvent
approximated as a sphere of radius RSolv. The surface

available to the solvent's centers is therefore given as the
surface defined by the sum of overlapping radii, Rα, where 

(5)

The effective charges, which are responsible for the dielec-
tric screening, will not be located at the centers of solvent
molecules but instead located at distance, δ SC from the
molecular center. The solvent accessible surface is then
defined by the sum of overlapping radii, Rα

*, where 

(6)

The solvent assessable surface area calculated by using
AM1 ‘COnductor-like Screening MOdel’ (COSMO). Mole-
cular geometry optimization carried out by AM1 semi

MR = 
n2 1– MW×( )

n2 2+ d×( )
-----------------------------------

Rα
vdW

Rα = Rα
vdW + RSolv

Rα
*  = Rα − δ SC

Table 1. Indole derivatives from MK886 compound as inhibitors of mPGES-1

No. Structure R1 R2 R3 IC50 pIC50

1 A CH2(4-Cl-Ph) COOH S-tertBu 1.6 −0.204
2* A H COOH S-tertBu 10 −1.041
3* A Me COOH S-tertBu 10 −1.041
4* A CH2(CH=CH2) COOH S-tertBu 6.7 −0.826
5 A (CH2)3Ph COOH S-tertBu 3.2 −0.50
6 A CH2(4-Cl-Ph) COOMe S-tertBu 7.2 −0.857
7 A CH2(4-Cl-Ph) CONH2 S-tertBu 10 −1.041
8 A CH2(4-Cl-Ph) COOH Ph 6.4 −0.806
9* A CH2(4-Cl-Ph) COOH OPh 0.65 0.187

10* A CH2(4-Cl-Ph) COOH CH2(4-tertBu-Ph) 0.29 0.538
11 A CH2(4-Cl-Ph) COOH CO(2-Me-Ph) 0.9 0.046
12 A CH2(4-Cl-Ph) COOH COCH2S-tertBu 0.26 0.585
13 A CH2(4-Cl-Ph) COOH COCH2-tertBu 0.25 0.602
14 A CH2(4-Cl-Ph) COOH Me 1.1 −0.041
15 B H iso-propyl − 4.3 −0.633
16 B H H − 3.2 −0.505
17 B F H − 2.6 -0.415
18 B tert-butyl H − 0.33 −0.481
19* B Ph H − 0.6 0.222
20 C Ph H − 0.16 0.796
21* C H Ph − 0.016 1.796
22 C Cl Ph − 0.022 1.658
23* C F Ph − 0.007 2.155
24 C F 1,3-pyrazinyl − 0.032 1.495
25* C F 3-pyridinyl − 0.012 1.921
26 C F 2-MeO-Ph − 0.005 2.301
27 C F 2-Cl-Ph − 0.004 2.398
28 C F 2-F-Ph − 0.008 2.097
29* C F 2-MeCO-Ph − 0.006 2.222
30 C F 2-Me-Ph − 0.003 2.523
31 C F 3-Me-Ph − 0.033 1.481
32 C F 4-Me-Ph − 0.031 1.509

aIC50 = 50% inhibition (μM) to mPGES-1 enzyme, pIC50 = −log IC50. * = included in the test set of compounds
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empirical method in conjunction with molecular mechanics
using CAChe pro software. 

Multiple Linear Regression Analysis (MLR). MLR
analyses performed using SPSS software. The quantum
mechanical descriptors used as independent variables and
the pIC50 values as the dependent variable. In the statistical
analyses, the systematic search performed to determine the
significant descriptors. In order to minimize the effect of co-
linearity and to avoid redundancy correlation matrix
developed with a cutoff value of 0.6 and the variables
physically removed from the analysis which shows exact
linear dependencies between subsets of the variables and
multi-colinearity (high multiple correlations between subsets
of the variables). In order to explore the reliability of the
proposed model we used the crossvalidation method. Pre-
diction error sum of squares (PRESS) is a standard index to
measure the accuracy of a modeling method based on the
crossvalidation technique. The r2

cv calculated by using
equation-7 based on the PRESS and SSY (Sum of squares of
deviations of the experimental values from their mean).

(7)

Pharmacophore Based QSAR

Generation of the Common Pharmacophore Hypothe-
sis (CPH). The common pharmacophore hypotheses were
generated using PHASE.28 Conformers were generated by
MCMM/LMOD with OPLS-2005 force field. A set of con-
formers for each molecule with maximum energy difference
of 10 kcal/mol relative to global energy minima were retain-
ed. Pharmacophore features; hydrogen bond acceptor(A),
hydrogen bond donor (D), hydrophobic group (H), negative-
ly charged group (N), positively charged group(P), and
aromatic ring (R) were defined by a set of chemical structure
patterns as SMARTS queries and assigned one of three
possible geometries, which define physical characteristics of
the site:

Point – the site is located on a single atom in the SMARTS
query.

Vector – the site is located on a single atom in the
SMARTS query, and assigned directionality according to
one or more vectors originating from the atom.

Group – the site is located at the centroid of a group of
atoms in the SMARTS query. For aromatic rings, the site
includes directionality, defined by a vector that is normal to
the plane of the ring. 

The final size of pharmacophore box was 1 Å, which
governs the tolerance on matching; the smaller the box size,
the more closely pharmacophores must match. Any single
pharmacophore in the group could ultimately become a
CPH. The analyses indicate that maximum three sites can
match only up to 30 molecules out of 32. These CPHs ex-
amined using a scoring function to yield the best alignment

of the active ligands and quality of alignment measured by a
survival score, which defined as: 

(8)

Where WDs are weights and SDs are scores, SSite represents an
alignment score, the root mean square deviation at the site
point position. Svec represents vector score, and averages
cosine of the angles formed by corresponding pairs of vector
features in aligned structures. Svol represents volume score
based on overlap of van der Waals models of non-hydrogen
atoms in each pair of structures. Ssel represents the selectivity
score, and accounts for what fractions of molecules are
likely to match the hypothesis regardless of their activity
toward a receptor. Weights are user adjustable. Wsite, Wvec,
Wvol, and Wrew have a default value of 1.0 while Wsel has a
default value of 0.0, so that a useful hypothesis are not
missed out.  represents the reward weights, where is
the number of actives that match the hypothesis minus one.
In the hypothesis generation, all default values used.

Assessment of significant CPH using Partial Least
Square Analysis (PLS). The evaluation of generated CPHs
performed by correlating the observed and estimated
activities of training and test sets of 20 and 10 molecules
respectively. The PLS analyses carried out using PHASE
with maximum of N/3 PLS factors, N1/3 number of ligands
in training set, and either atom, or pharmacophore-based
model using grid spacing of 1 Å. CPHs of best predictivity
and significant statistics were selected for molecular align-
ments and QSAR model. The same alignment used for
further 3D-QSAR (CoMFA and CoMSIA).

3D-QSAR (CoMFA and CoMSIA). In standard CoMFA
and CoMSIA procedure, a suitable conformation29 is desired
for superimposing the ligands which is assumed to be
bioactive. The alignment based on CPH with significant
statistical data was imported in to SYBYL 7.3 30 running on
linux cluster and directly used for 3D-QSAR. Lennard-Jones
and Coulomb potentials based CoMFA has been performed
and the steric as well as electrostatic energies were calcu-
lated by using sp3 carbon probe atom with Van der Waals
radius of 1.52 Å and (+1) charge. The energies truncated to
±30 kcal mol−1 and the electrostatic contributions ignored at
lattice interactions with maximum steric interactions. The
CoMFA generated by standard method in SYBYL. The
CoMSIA models derived with the same lattice box as in
CoMFA. All five CoMSIA similarity index (steric, electro-
static, hydrophobic, hydrogen bond donor, and hydrogen
bond acceptor) evaluated using the probe atom. The
CoMSIA models from hydrophobic and hydrogen bonds
were calculated between the grid point and each atom of the
molecule by a Gaussian distribution function.18 The default
value (0.3) of attenuation factor was used, which is the
standard distance dependence of molecular similarity. The
effect of using the standard attenuation factor displayed in
contour maps with prominent molecular features. 

Partial Least Square (PLS) analysis and validation of
QSAR models: To derive 3D-QSAR models, the CoMFA
and CoMSIA descriptors used as independent variables and
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the pIC50 as the dependent variable. PLS analysis31,32 used to
correlate these CoMFA and CoMSIA descriptors as a func-
tion of variation of inhibitory activity values. The CoMFA
cutoff values were set to 30 kcal mol−1 for both steric and
electrostatic fields, and all fields scaled by the default
options in SYBYL. The crossvalidation analysis performed
by using the leave one out (LOO) method in which one
compound removed from the data set and its activity predict-
ed using the model derived from the rest of the data points.
The cross-validated correlation coefficient (q2) that resulted
in optimum number of components and lowest standard
error of prediction were considered for further analysis and
calculated using following equations (9)-(10)

(9)

PRESS = (10)

Where, γpred, γactual and γmean are predicted, actual, mean values
of the target property (pIC50), respectively, and PRESS is the
sum of predictive sum of squares. The non-crossvalidated PLS
analyses were performed with 2.0 column filter, to reduce com-
putation time with small effect on the q2 values. To assess the ro-
bustness and statistical confidence of the derived models,
bootstrapping analysis for 10 runs performed. To assess the pre-
dictive power of the 3D-QSAR models derived using the train-
ing set, biological activities of an external test set of twelve
molecules predicted. The predictive ability of the models is ex-
pressed by the r2

predictive value, which is analogous to cross-vali-
dated r2 (q2) and is calculated using the formula-11

(11)

Where SD is the sum of the squared deviations between the
biological activities of the test set and mean activities of the
training molecules and PRESS is the sum of squared
deviation between predicted and actual activities of the test
set molecules. 

Results

QM-based QSAR. The necessary input values extracted
from MOPAC calculation result. MLRA (multiple linear
regression analysis) employed to correlate the variation of
activity with the values of chemical potential, electrophilic
frontier density, molar refractivity and solvent accessible
surface area. 

In initial step of regression, no significant model obtained
but after careful data mining, based on number of rings one-
indicator parameter “I” introduced. All molecules having
four rings they have been allotted I = 1 while for rest all
molecules I = 0. This indicator parameter significantly con-
tributes to every models, clearly indicates the pharmaco-
phore feature of fourth ring. In general, the aromatic rings
are responsible for hydrophobicity so the presence of

indicator parameter in every model indicates the probability
of hydrophobic interaction. A significant model PA1 was
reported with better statistics (r2

CV = 0.73, r2 = 0.79) which
involve molar refractivity with a coefficient 0.004 and
chemical potential with a coefficient 0.82. The major con-
tribution of MR and small contribution of chemical potential
indicates that, there is a contribution of steric and electro-
static field effect to activity. Based on this model the pre-
dicted activities of training and test sets are reported in Table  2.

PA1 = 0.004 × MR + 0.82 × μ + 1.83 × I−4.22
N = 20, r2

CV = 0.73, r2
 = 0.79, SEE = 0.52, F = 23.34,

Pearson Rtestset=0.89 (12)

The model was validated against test set of 10 molecules
(Pearson Rtestset = 0.89). Similarly another significant model
(r2

CV = 0.75 r2 = 0.80) obtained by solvent assessable surface
area (SASA) with a coefficient 0.005 and chemical potential
with a coefficient 0.767. The SASA is also steric and
hydrophobic parameter while μ is electrostatic parameter,
which is in consonance with model PA1 and gives emphasis
to contribution of steric bulk to activity. 

PA2 = 0.005 × SASA + 0.767 × μ + 1.759 × I − 4.360
N = 20, r2

CV = 0.75 r2 = 0.80, SEE = 0.50, F = 2501,
Pearson Rtestset = 0.91 (13)

Based on this model the regression equation (13) developed
and the predicted activities of training and test sets are
reported in Table 2. This model was also validated against
test set of 10 molecules (Pearson Rtestset = 0.91). In order to
have further insight for electrostatic interaction a quantum
mechanical atomic level calculation was performed and the
electrophilic frontier density (EFD) at every atom of each
molecules were calculated, the highest EFD of every mole-
cule has been used as electrostatic descriptor. The model
PA3 derived by MR and EFD with indicator parameter “I”
which gives better statistics (r2

CV = 0.79 r2 = 0.85) than
corresponding model PA1. The regression equation (14) has
been derived and the predicted activities of training and test
sets are reported in Table 2.

PA3 = 0.013 × MR − 1.66 × EFD + 1.395 × I − 1.034
N = 20, r2

CV = 0.79 r2 = 0.85, SEE = 0.50, F = 25.63,
Pearson Rtestset = 0.94 (14)

The routine model validation carried out using test set of 10
molecules (Pearson Rtestset = 0.94). Similarly, the contribu-
tion of EFD tested in conjunction with SASA and the
regression model PA-4 was derived. This model gives better
statistics (r2

CV = 0.79 r2 = 0.85) than corresponding model
PA-2 and the regression equation (15) has been developed.
The predicted activities of training and test sets by model
PA-4 are reported in Table 2.

PA4 = 0.013 × SAS − 1.758 × EFD + 1.187 × I − 1.795
N = 20, r2

CV = 0.79, r2 = 0.85, SEE = 0.38, F = 28.35,
Pearson Rtestset = 0.95 (15)
Like before this model was also validated against test set of
10 molecules (Pearson Rtestset = 0.95).

The linear dependency of Observed pIC50 jointly on steric,

q2 = 1 − 
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electrostatic and hydrophobic parameters indicates that
ligands have binding affinity with receptor due to steric,
hydrophobic and electrostatic interaction. To gain further
insight we have developed pharmacophore based QSAR
models.

Pharmacophore. The same training and test sets used to
develop the pharmacophore based QSAR models by using
tree based partition algorithms. No CPHs obtained common
in all 32 molecules but after elimination of compound 6 and
7 a number of CPHs were reported using sites; hydrophobic
(H), negative (N) and ring (R). Maximum three features
were allowed to develop hypothesis and there were three
hypotheses based on NRR, 17 hypotheses based on HRR, 97
hypotheses based on HNR and 23 hypotheses based on
HHR. On applying the scoring function for 3 features CPHs
the 28 alignment rules were identified. The training set
molecules were aligned by these different rules and the
partial least square (PLS) analysis employed to correlates the

biological activities with pharmacophore scores. In PLS
analysis, 3 factors used with a grid spacing 1 Å. The three
different regression models for each alignment were derived
and the regression summary of top four hypotheses (A1-A3,
B1-B3, C1-C3 and D1-D3) is reported in Table 3. The top
models were selected by values of survival score of hypo-
theses A (survival score = 7.3), B (survival score = 7.27), C
(survival score = 7.23) and D (survival score = 7.19). All
four rules of alignment were based on pharmacophore com-
bination (HNR). Model A3 is statistically (q2 = 0.77, r2 =
0.97, F = 173.2, Rtestset = 0.9) best fitted and consequently
used for prediction of activities of training and test sets of
molecules as reported in Table 4. Figure 1 shows the trend of
observed and predicted activities.

Figure 2 demonstrates the selected pharmacophore on
template molecule-30. The green ball showing the H
(hydrophobic) pharmacophore while red ball showing N
(negative) site. The brown ring demonstrates the R (ring)
pharmacophore. The H and R are located in same zone,
which is quite reasonable. The hydrophobicity not related to
parent skeleton but with fourth ring, which is in accordance

Table 2. The Observed and predicted pIC50 values of mPEGS-1
inhibitors by quantum mechanical descriptors

No. pIC50 PA1 PA2 PA3 PA4

1 −0.20 −0.334 −0.315 −0.706 −0.717
5 −0.51 −0.273 −0.258 −0.659 −0.681
6a −0.86 −0.252 −0.225 −0.543 −0.522
7a −1.04 −0.143 −0.111 −0.744 −0.701
8 −0.81 −0.246 −0.232 0.027 0.066
11 0.05 −0.018 −0.007 0.261 0.315
12 0.59 −0.064 −0.054 0.437 0.486
13 0.60 −0.085 −0.079 0.152 0.193
14 −0.04 −0.387 −0.401 −0.261 −0.283
15 −0.63 −0.372 −0.426 −0.211 −0.337
16 −0.51 −0.437 −0.475 −0.472 −0.538
17 −0.42 −0.295 −0.328 −0.411 −0.433
18 0.48 −0.393 −0.388 −0.170 −0.149
20 0.80 1.652 1.634 1.765 1.695
22 1.66 1.783 1.785 1.815 1.813
24 1.50 2.016 1.993 1.677 1.662
26 2.30 1.709 1.733 1.875 1.916
27 2.40 1.823 1.846 1.807 1.869
28 2.10 1.842 1.841 1.764 1.774
30 2.52 1.801 1.798 1.847 1.833
31 1.48 1.828 1.823 1.850 1.837
32 1.51 1.815 1.816 1.870 1.872

Test Set
2 −1.04 −0.410 −0.440 −1.240 −1.350
3 −1.04 −0.400 −0.450 −1.160 −1.300
4 −0.83 −0.450 −0.490 −0.800 −0.960
9 0.19 −0.190 −0.160 0.100 0.200
10 0.54 −0.110 −0.040 0.370 0.530
19 0.22 1.510 1.440 1.410 1.240
21 1.80 1.700 1.680 1.800 1.730
23 2.16 1.810 1.790 1.780 1.740
25 1.92 1.900 1.880 1.720 1.700
29 2.22 1.850 1.870 1.840 1.880

adatapoints not used inequations

Table 3. The Statistical summary of Pharmacophore based Models

No. Model Factors q2 SD r2 F RMSE
Pearson 
Rtestset

A1 HNR 1 0.8 0.6 0.78 64.2 0.56 0.9
A2 HNR 2 0.59 0.4 0.91 83.1 0.81 0.79
A3 HNR 3 0.77 0.23 0.97 173.2 0.6 0.9
B1 HNR 1 0.74 0.6 0.78 63.7 0.64 0.87
B2 HNR 2 0.51 0.27 0.96 188.3 0.88 0.72
B3 HNR 3 0.62 0.21 0.97 202.5 0.78 0.79
C1 HNR 1 0.8 0.58 0.79 68.9 0.56 0.9
C2 HNR 2 0.72 0.4 0.91 83 0.66 0.85
C3 HNR 3 0.78 0.25 0.97 157.3 0.59 0.89
D1 HNR 1 0.68 0.78 0.63 30.2 0.71 0.83
D2 HNR 2 0.82 0.38 0.92 92.3 0.53 0.91
D3 HNR 3 0.79 0.27 0.96 132.3 0.58 0.89

Figure 1. Trend of observed and predicted activity by pharmaco-
phore based model.



652     Bull. Korean Chem. Soc. 2008, Vol. 29, No. 3 F. A. Pasha et al.

to the assumption made for indicator parameters in QM
based QSAR. 

The molecules were aligned HNR based CPHs and shown
in Figure 3. Same alignment subsequently used for predic-

tion of activities by pharmacophore based QSAR and 3D-
QSAR. 

CoMFA model. CoMFA developed by using statistically
significant CPH-based alignment. The aligned molecules
imported in Sybyl and charges were assigned with the
Gasteiger-Hückel method. Previously defined training and
test sets were used to correlate the biological activities
against CoMFA fields. Three different CoMFA models were
derived using steric “S”, electrostatic “E” and jointly both
fields. The regression summary reported in Table 5. The
model based on both steric and electrostatic field is most
successful as clear from statistics, the crossvalidated leave
one out q2 = 0.90 with 6 components, non-crossvalidated r2

Table 4. The Observed and predicted activities by Pharmacophore
based Model

No. pIC50 PAPharma Resid.

1 −2.04 −1.92 −0.12
5 −0.5 −0.44 −0.06
8 −0.81 −0.7 −0.11
11 −0.5 −0.07 −0.43
12 −0.58 −0.94 −0.36
13 −0.6 −0.76 −0.16
14 −0.04 −0.36 −0.4
15 −0.633 −0.74 −0.107
16 −0.5 −0.44 −0.06
17 −0.41 −0.42 −0.01
18 −0.48 −0.25 −0.23
20 −0.8 −0.67 −0.13
22 −1.67 −1.89 −0.22
24 −1.5 −1.56 −0.06
26 −2.3 −2.2 −0.1
27 −2.4 −2.21 −0.19
28 −2.1 −1.98 −0.12
30 −2.52 −2.27 −0.25
31 −1.48 −1.73 −0.25
32 −1.51 −1.72 −0.21

Test Set
2 −1.04 −0.03 −1.07
3 −1.04 −0.21 −0.83
4 −0.83 −0.24 −0.59
9 −0.19 −0.6 −0.79
10 −0.54 −0.1 −0.44
19 −0.22 −0.61 −0.39
21 −1.8 −1.67 −0.13
23 −2.15 −1.75 −0.4
25 −1.92 −1.71 −0.21
29 −2.22 −1.72 −0.5

compound 6 and 7 ommitted from analysis due to lack of CPHs

Figure 2. The perception of pharmacophore on template molecule-
30.

Figure 3. Pharmacophore based molecular alignment.

Table 5. Regression summary of CoMFA and CoMSIA

Field n q2 r2 SE F r2
bs SD r2

predictive

CoMFA
S 4 0.89 0.99 0.13 387.4 − − −
E 3 0.46 0.79 0.57 20.35 − − −

0.71S+0.28E 6 0.902 0.99 0.06 1083.59 0.99 0.001 0.8
CoMSIA

S 3 0.87 0.93 0.33 70.88 − − −
E 3 0.64 0.83 0.51 25.71 − − −
H 7 0.82 0.99 0.12 222.83 − − −
D 1 −0.59 − − − − − −
A 2 −0.1 − − − − − −

0.6S+0.4E 6 0.9 0.99 0.11 311.51 − − −
0.33S+0.30E+0.37H 10 0.93 1 0.01 6565.86 1 0 0.8
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= 0.99 with standard error = 0.06 and F value = 1083.59.
The success of model was tested for internal predictivity
(r2

boot strapping = 0.99, SD = 0.001) and external predictivity
(r2

predictive = 0.80) for test set of 10 molecules. Based on this
model the predicted activities are presented in Table 6. The
trend of observed and predicted activities of training and test
sets are shown in Figure 4 with a value of Rtestset = 0.92.

The Figure 5 shows CoMFA contour map based on
CoMFA model-3 with ligand 30. The model holds green and
blue contour around ring B indicates that a bulky and
positive group around this ring might have good effect over
activity. The ring A and pentagonal ring holds a yellow
contour, indicates the favorable sites for small groups. The
data also supports this observation and in case of compound
20-32 as bulk increases at ring B the activity also increases
while in case of compound 1-11 as bulk increases at
pentagonal ring the activity decreases.

CoMSIA model. The CoMSIA models also have been
made by using five field descriptors namely (steric, electro-
static, hydrophobic, Hydrogen bond donor and acceptor)

with same molecular alignment as for CoMFA. The steric
field alone shows good relationship with the value of q2 =
0.87 while in conjunction with electrostatic field the result
become more prominent (q2 = 0.90 and r2 = 0.99). The most
fitted model (q2 = 0.93, r2 = 1.00) was obtained by combi-
nation of steric, electrostatic and hydrophobic fields. This
model involves SE = 0.01 and F values = 6565.86 and the
model was tested for internal predictivity (r2

boot strap = 1.00)
and external predictivity (r2

predictive = 0.80) to test set of 10
molecules. The statistical summary and the predicted
activities of training and test sets are reported in Table 5 and
Table 6 respectively. The trend of observed and predicted
activities of training and test sets is shown in Figure 6 with a
value of Pearson Rtestset = 0.91.

CoMSIA steric contour map was developed and shown in
Figure 7 with template (ligand-30). The map is quite similar
to CoMFA map and holds a green contour around ring B
while yellow contour around ring A and pentagonal ring. It
is clear from map the ring B is favorable for bulk while ring
A and pentagonal ring is favorable for small groups.
Similarly, the Figure 8 shows CoMSIA electrostatic contour
map and a small blue contour appears around ring “A”,
indicates that a positive group around this site might
improve the activity. The CoMSIA hydrophobic contour
map shown in Figure 9 and hydrophobic favorable magenta

Table 6. The Observed and predicted activities by CoMFA and
CoMSIA based Models

No. pIC50 PACoMFA Resid. PACoMSIA Resid.

01 −0.20 −0.208 0.008 −0.183 −0.017
05 −0.50 −0.498 −0.002 −0.502 0.002
08 −0.81 −0.835 0.025 −0.799 −0.011
11 0.05 −0.025 0.075 0.038 0.012
12 0.58 0.604 −0.024 0.585 −0.005
13 0.60 0.639 −0.039 0.601 −0.001
14 −0.04 −0.089 0.049 −0.048 0.008
15 −0.63 −0.614 −0.016 −0.617 −0.013
16 −0.51 −0.451 −0.059 −0.504 −0.006
17 −0.41 −0.437 0.027 −0.431 0.021
18 −0.48 −0.416 −0.064 −0.493 0.013
20 0.80 0.806 −0.006 0.806 −0.006
22 1.66 1.806 −0.146 1.666 −0.006
24 1.50 1.425 0.075 1.490 0.010
26 2.30 2.312 −0.012 2.329 −0.029
27 2.40 2.392 0.008 2.414 −0.014
28 2.10 2.048 0.052 2.074 0.026
30 2.52 2.509 0.011 2.499 0.021
31 1.48 1.431 0.049 1.476 0.004
32 1.51 1.507 0.003 1.504 0.006

Test Set
02 −1.04 −0.294 −0.746 −0.378 −0.662
03 −1.04 −0.247 −0.793 −0.524 −0.516
04 −0.83 −0.108 −0.722 −0.352 −0.478
09 0.19 −0.357 0.547 −0.478 0.668
10 0.54 −0.048 0.588 −0.507 1.047
19 0.22 0.498 −0.278 0.402 −0.182
21 1.80 1.365 0.435 1.227 0.573
23 2.15 1.544 0.606 1.599 0.551
25 1.92 1.483 0.437 1.707 0.213
29 2.22 2.024 0.196 2.116 0.104

compound 6 and 7 ommitted from analysis due to lack of CPHs

Figure 4. Trend of Observed and predicted pIC50 by CoMFA
based model.

Figure 5. The CoMFA steric and electrostatic contour maps.
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contour appear around ring B. The same site holds a green
contour in Figure 7 and red contour in Figure 8, which is
quite reasonable, and a bulk with negative charge and
hydrophobic nature might improve the activity. In quantum
mechanical QSAR we have taken an Indicator parameter
responsible for existence of ring B in molecule. 

Since rings often related with hydrophobic nature and we

assumes that indicator parameter related with hydropho-
bicity, the CoMSIA gives a support to assumption and there
is demand of hydrophobic group at fourth ring for which the
“I” was considered. In same figure, a cyan contour appears
near to pentagonal ring, which also holds a yellow contour in
Figure 8 and indicates that a hydrophilic and small group is
desirable around this site.

Discussion

PGE synthase is a member of the MAPEG family, which
includes FLAP and LTC4 synthase. MK-886, which is a
known inhibitor of PGE synthase, leukotriene biosynthesis,33

and LTC4 synthase.34 Since there is no crystal structure of
mPEGS-1, the ligand-based QSAR techniques are tools to
understand inhibitor potency. Interestingly it is found that
the region of FLAP essential for binding of MK-88635,36 is
highly conserved in PGE synthase. MK-886 appears to
inhibit leukotriene biosynthesis by binding to an arachido-
nate binding site on FLAP.37 The presence of a consensus
amino acid sequence and sensitivity to indole inhibitors of
the MK-886 series for FLAP, LTC4 synthase, and PGE
synthase suggest that this region might have similar inter-
action with MK-886. In fact, the negative charge of the
aspartate or a glutamate at position 62 of FLAP is essential
for binding MK-886 analogues. In present study it is clear
from CoMFA map, there is a demand of positive groups to
improve the activity. The positive group may facilitate the
binding with negative zone of receptor. The position R1 of
structure “C” is favorable for electropositive groups, which
is also clear from compound 22 and 23. A fluorine atom
instead of chlorine at R1 (structure-C) significantly increase
the activity. Similarly, the site R2 of structure “C” is
favorable for bulkiness. It is clear from data, the compounds
21 to 32 holds phenyl ring at site R2 that is favorable for
bulkiness and the activity of all the compounds is compa-
ratively higher than other molecules. As bulk increases to
the phenyl ring of R2 (structure “C”) the activity increases.
The ring at R2 is very sensitive to activity, the compounds
30, 31 and 32 has similar structure but the position of methyl
group varies (site 2, 3 and 4) which brought significant
change in activity. 

Recently Amor et al.38 presented a systematic search
based CoMFA and CoMSIA study of these compounds. The
earlier work reports the contribution of hydrogen bond
donor and acceptor field effect with steric electrostatic and
hydrophobic interaction to activity but the model derived by
steric, electrostatic and hydrophobic effect was statistically
better than former model. The statistically refined results
were presented but all available descriptors give high stati-
stical values. In earlier CoMFA and CoMSIA study, there
was no clear indication to key interaction. In this study, we
have generated CPHs (common pharmacophore hypothesis)
and there is no CPHs seen with hydrogen bond donor (D) or
acceptor (A) but mostly CPHs based on HNR. We used the
CPHs based alignment in CoMFA and CoMSIA, the model
individually based on hydrogen bond donor field effect gives

Figure 6. Trend of Observed and predicted pIC50 by CoMSIA
based model.

Figure 7. The CoMSIA steric map.

Figure 8. The CoMSIA electrostatic map.

Figure 9. The CoMSIA hydrophobic map. 
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leave one out q2 = −0.60 and hydrogen bond acceptor field
effect gives leave one out q2 = −0.10 as reported in Table 5.
The negative correlation coefficient supports to pharmaco-
phore based assumption as there is no CPHs based on (D) or
(A). In this way the results indicates that steric, electrostatic
and hydrophobic effects are rather important and prominent
factors for inhibition.

Conclusion

To identify the key factors more systematically, we have
considered the three different QSAR methods. The quantum
mechanical QSAR based on molecular and atomic descrip-
tors indicate, steric bulk, electrostatic fields effect and
hydrophobicity jointly contributes to activity of a series of
mPGES-1 inhibitors. In the current study, we have generated
CPHs which are based on HNR. To identify the factors more
systematically, we have considered the three different
methods of QSAR. The QM-based QSAR indicates, steric
bulk electrostatic and hydrophobic effect jointly contributes
to activity of a series of mPGES-1 inhibitors. The best CPHs
identified which indicates that HNR are mainly responsible.
In ligand-based 3D-QSAR analyses (CoMFA and CoMSIA)
imply that the steric, electrostatic and hydrophobic effects
jointly contribute to the inhibitory activity. The contour
maps indicate the bulky group around ring B and small
group near pentagonal ring may be desirable for better
activity. These findings might be helpful to further design
novel compounds with enhanced activity against mPGES-1.
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