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Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized
polarity parameter (ET

N) of 216 various solvents with diverse chemical structures using a quantitative-structure
property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in
the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total
charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (µ) and polarizability term (π I) are
input descriptors and its output is ET

N. It is found that properly selected and trained neural network with 192
solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For
evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the
ET

N values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation
coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model
should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the
fact that the ET

N of solvents shows non-linear correlations with the molecular descriptors. 
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Introduction

The energetic level of molecules may be modified by
interactions with surrounding molecules of solvents and it
may be difficult to relate chemical properties to molecular
structures.1 The strong influence of solvent on chemical and
physical processes (for example, reaction rates, selectivity,
chemical equilibria, position and intensity of spectral
absorption bands and liquid chromatographic separations,
etc.) has well established.1-8 The use of solvatochromic
indicators is a suitable method for studing solute-solvent
interactions, since the transition energy of the indicators
depends on the solvation’s sphere composition and proper-
ties.1 The solvatochromic parameter for measuring empiri-
cally the polarity of solvents, ET(30), is calculated from the
maxima of absorbance of the betaine dye as a solution in the
solvent under investigation at 25 oC and at a pressure of 0.1
MPa expressed in wavenumber.1 The solvatochromic para-
meter is demonstrated to be successful in correlating a wide
range of chemical and physical properties involving solute-
solvent interactions as well as biological activities of
compounds.1 Normalized polarity parameter (ET

N) is a
dimensionless “normalized” scale, defined by equation (1)
in reference to tetramethylsilane (TMS) and water.1,2

(1)

The macroscopic (bulk) properties of chemical compounds
clearly depend on their microscopic (structural) characteri-
stics. Because of importance of solvent effects, it has been of

the highest interest to develop quantitative structure pro-
perty/activity relationships (QSPR/QSAR), which reflect
intermolecular interactions in dense media. Such QSPR/
QSAR correlation equations are usually multi-parametric.2-7

To obtain a significant correlation, it is crucial that ap-
propriate descriptors be employed.9 Famini et al. used
theoretical linear solvation energy relationship (TLSER)
methodology to correlate ET

N of 30 solvents with molecular
descriptors.10 The authors concluded that by the TLSER
could predict ET

N values for various solvents and provide
better understanding of ET

N depend on molecular para-
meters. These descriptors have small cross-correlation, that
is to say the descriptors reflect a particular microscopic
property nearly without “mixing” or contamination from
other descriptors.10-18 

 Table 1 demonstrates the molecular descriptors that have
been used in this article. Vm is molecular volume of solvent
that inversely proportional to the cohesion energy of
molecules. The polarizability term (πI) is obtained by
dividing the polarizability volume by the molecular volume
to produce a unitless, size independent quantity, which
indicates the ease with which the electron cloud may be
moved or polarized. Dipole moment (µ) and total charge in
molecule (qt) terms demonstrate dipole-dipole interactions.
The hydrogen-bond donating ability is divided into two
components: εA (the energy difference between the εHOMO of
water and εLUMO of solvent) and q+ (the most positive charge
of a hydrogen atom) of solvent molecule. Analogously, the
hydrogen-bond accepting ability is divided into two com-
ponents: εB (the energy difference between the εLUMO of
water and εHOMO of solvent) and q− (the most negative

ET
N = 

ET 30( ) ET 30( )TMS–

ET 30( )Water ET 30( )TMS–
-------------------------------------------------------------
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atomic charge) of solvent.11-18 
Various methods for constructing QSAR/QSPR models

have been used including multi-parameter linear regression
(MLR), principal component analysis (PCA) and partial
least-squares regression (PLS). In addition, artificial neural
networks (ANNs) have become popular due to their success
where complex non-linear relationships exist amongst
data.19-21 ANNs are biologically inspired computer programs
designed to simulate the way in which the human brain
processes information. ANNs gather their knowledge by
detecting the patterns and relationships in data and learned
(or rained) through experience, not from programming.
There are many types of neural networks designed by now
and new ones are invented every week.22 The behavior of a
neural network is determined by transfer functions of its
neurons, by learning rule, and by the architecture itself. An
ANN is formed from artificial neuron or processing elements
(PE), connected with coefficients (weights), which constitute
the neural structure and are organized in layers. The first
layer is termed the input layer, and the last layer is the output
layer. The layers of neurons between the input and output
layers are called hidden layers. The wide applicability of
ANNs stems from their flexibility and ability to model non-
linear systems without prior knowledge of an empirical
model. Neural networks do not need on explicit formulation
of the mathematical or physical relationships of the handled
problem. These give ANNs an advantage over traditional
fitting methods for some chemical application. For these
reason in recent years, ANNs have been used to a wide
variety of chemical problems such as simulation of mass
spectra, ion interaction chromatography, aqueous solubility
and partition coefficient, simulation of nuclear magnetic
resonance spectra, prediction of bioconcentration factor,
solvent effects on reaction rate, prediction of normalized
polarity parameter in mixed solvent systems and dissociation
constant of acids.23-39

The main aim of the present work is to develop a QSPR
model based on molecular descriptors using ANN for

modeling and prediction of ET
N values for various solvents

(including 216 solvents) with diverse chemical structures. In
the first step, a MLR model was constructed. Then for
inspection of non-linear interactions/relation between differ-
ent parameters of solvents in the model, an ANN model was
generated for the prediction of ET

N values and the results
were compared with the experimental and calculated values
using MLR model.

Theory

A detailed description of theory behind a neural network
has been adequately described by different researchers.19-21

There are many types of neural network architectures, but
the type that has been most useful for QSAR/QSPR studies
is the multilayer feed - forward network with back-propa-
gation (BP) learning rule.22 The number of neurons in the
input and output layers are defined by system’s properties.
The number of neurons in the hidden layer could be
considered as an adjustable parameter, which should be
optimized. The input layer receives the experimental or
theoretical information. The output layer produces the
calculated values of dependent variable. The use of ANNs
consists of two steps: “training” and “prediction”. In the
training phase the optimum structure, weight coefficients
and biases are searched for. These parameters are found
from a training and validation data sets. After the training
phase, the trained network can be used to predict (or
calculate) the outputs from a set of inputs. ANNs allow one
to estimate relationships between input variables and one or
several output dependent variables. Information from inputs
is fed forward through the network to optimize the weights
between neurons. Optimization of the weights is made by
backward propagation of the error during training or learn-
ing phase. The ANN reads the input and target values in the
training data set and changes the values of the weighted links
to reduce the difference between the calculated output and
target values. The error between output and target values is
minimized across many training cycles until network reaches
specified level of accuracy. If a network is left to train for too
long, however, it will overtrain and will lose the ability to
generalize.34-37 

Methods and Procedure

Data set. As first step for developing the MLR and ANN
models, the molecular descriptors should be generate.
Normalized polarity parameter, and molecular volume of
solvents are literature values.1,40 In order to calculate the
theoretical descriptors, the z-matrices (molecular models)
were constructed with the aid of HyperChem 5.01 and
molecular structures were optimized using AM1 algorithm.
In order to calculate the theoretical descriptors and to find
optimized geometries, the molecular geometries of molecules
were further optimized with the same algorithm in MOPAC
version 6. The molecules in the data sets are including:
alkanes, alkenes, haloalkanes, haloalkenes, cycloalkanes,

Table 1. The molecular descriptors used in the MLR and ANN
modelsa

Symbol Name Definition Units

Vm Molecular volume Molecular volume Å3

πI Polarizability index Polarizability/Vm none
εA Covalent HB acidity 0.3-0.01(El – Ehw) heV
q+ Electrostatic HB acidity Maximum(+) charge on an 

H atom 
acu

εB Covalent HB basicity 0.3-0.01(Elw – Eh) heV
q− Electrostatic HB basicity Maximum(−) charge on an 

atom 
acu

qt Total charge Total charge on molecule acu
µ Dipole moment Dipole moment D
a Hev = hecto-electron volt (1 heV = 100 ev = 9.6485 × 103 kJmol−1); acu
= atomic charge unit; D = debye; HB = hydrogen bond; El = LUMO
energy and Eh = HOMO energy of the solvent; Elw and Ehw refer to the
LUMO and HOMO energy for water, respectively. 
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cycloalkenes, alcohols, esters, ethers, ketones, amines, nitriles,
amides, acids, phenols, hetrocyclic, nitro and aromatic
compounds. The molecular descriptors were calculated for
216 solvents. The data set was randomly divided into three
groups: a training set, a validation set and a prediction set
consisting of 168, 24 and 24 molecules, respectively. The
training and validation sets were used for the model
generation and the prediction set was used for the evaluation
of the generated model, because a prediction set is a better
estimator of the ANN generalization ability than a validation
(monitoring) set.41

Linear correlations. MLR model was developed for
prediction of normalized polarity parameter by molecular
descriptors. The method of stepwise multi-parameter linear
regression was used to select the most important descriptors
and to calculate the coefficients relating the ET

N to the
descriptors. The MLR models were generated using spss/pc
software package. Quality of the equation was indicated by
the root mean square error (RMSE), Fisher index of quality
(F) and correlation coefficient (R).

Neural network generation. The specification of a
typical neural network model requires the choice of the type
of inputs, the number of hidden layers, the number of
neurons in each hidden layer and the connection structure
between the inputs and the output layers. The number of
input nodes in the ANNs was equal to the number of
molecular descriptors in the MLR model. A three-layer
network with a sigmoidal transfer function was designed.
The initial weights were randomly selected between 0 and 1.
Before training, the input and output values were normalized
between 0.1 and 0.9. The optimization of the weights and
biases was carried out according to the resilient back-
propagation algorithm.42 For evaluation of the predictive
power of the network, the trained ANN was used to predict
ET

N values of the molecules included in the prediction set.
The performances of training, validation and prediction of
ANNs are evaluated by RMSE, which is defined as follows:

RMSE = (2)

Where Pi
exp and Pi

cal are experimental and calculated values
of ET

N with ANN model and N denote the number of data
points. 

The processing of the data was carried on Intel Pentium III
processor, 800 MHz PC with 256 Mb of RAM in windows
XP environment using Matlab 6.5.42 The neural networks
were implemented using Neural Network Toolbox Ver. 4.0
for Matlab.43

Results and Discussion

Multi-parameter linear correlation of ET
N values vs. the

molecular descriptors for 168 solvents in the training set
gives equation (3). 

ET
N = 0.391(± 0.066) + 2.375(± 0.126)q+ 

 + 0.033(± 0.007) µ + 0.0645(± 0.012) qt  

 – 0.115(± 0.024)Vm – 2.583(± 0.577) πI (3)

(n = 168, R = 0.874, RMSE = 0.1043 F5,162 = 104.92)

βq+ = 0.737, βµ =0.196, βqt = 0.245, βvm = −0.208, βπI = −0.176

It is clear that from eight descriptors in Table 1, five de-
scriptors are important in correlation of ET

N vs. the molecular
descriptors. As can be seen, ET

N of solvents increase with
increasing q+, µ and qt and decrease with Vm and πI. Also
effects of q+ and qt are higher than that of the other
descriptors, because standardized coefficients (β values) of
q+ and qt are higher than that of the other descriptors. The
equation is similar to the model obtained for 30 solvents.10

With increasing Vm and πI descriptors, normalized polarity
parameter decrease. Because, both descriptors are indicative
of dispersion effects.10 Descriptor for electrostatic hydrogen-
bond acidity is q+. With increasing this descriptor, the hydro-
gen-bonding interactions between the solvent molecules and
the betaine dye increases. Dipole-dipole interactions bet-
ween the molecules of solvents and betaine dye increases
with increasing µ and qt descriptors. 

The next step in this work was the generation of ANN
model. There are no rigorous theoretical principles for
choosing the proper network topology, so different structures
were tested in order to obtain the optimal hidden neurons
and training cycles.37 Before training the network, the
number of nodes in the hidden layer was optimized. In order
to optimize the number of nodes in the hidden layer, several
training sessions were conducted with different numbers of
hidden nodes (from one to twelve). The root mean squared
error of training (RMSET) and validation (RMSEV) sets
were obtained at various iterations for different number of
neurons at the hidden layer and the minimum value of
RMSEV was recorded as the optimum value. Plot of
RMSET and RMSEV vs. the number of nodes in the hidden
layer has been shown in Figure 1. It is clear that the nine

 
i 1=

N

∑
Pi

exp Pi
cal–( )2

N
--------------------------------

Figure 1. Plot of RMSE for training and validation sets vs. the
number of nodes  in hidden layer.
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nodes in hidden layer is optimum value.
This network consists of five inputs (including q+, µ, πI,

Vm and qt), the same descriptors in the MLR model, and one
output for ET

N. Then an ANN with architecture 5-9-1 was
generated. It is note worthy that training of the network was
stopped when the RMSEV started to increases i.e. when
overtraining begins. The overtraining causes the ANN to
loose its prediction power.37 Therefore, during training of the
networks, it is desirable that iterations are stopped when
overtraining begins. To control the overtraining of the
network during the training procedure, the values of RMSET
and RMSEV were calculated and recorded to monitor the
extent of the learning in various iterations. Results obtained
showed that after 10000 iterations the value of RMSEV
started to increase and overfitting began (Figure 2).

The generated ANN was then trained using the training set
for the optimization of the weights and biases. For the
evaluation of the predictive power of the generated ANN, an
optimized network was applied for prediction of the ET

N

values of various solvents in the prediction set, which were
not used in the modeling procedure. Then calculated values
of the ET

N for various solvents in training, validation and
prediction sets using the ANN model were obtained. 

Figure 3 demonstrates plot of the calculated values of ET
N

for 24 solvents in prediction set versus the experimental
values of it. 

As expected, the calculated values of ET
N are in good

agreement with those of the experimental values. The corre-
lation equation for the calculated values of ET

N in prediction
set using the ANN model and the experimental values is as
follows:

 ET
N(cal) = 1.0444ET

N(exp) − 0.0199 (4)

(R = 0.985; RMSE = 0.0375; F1,23 = 741.14)

Plot of the residual values for ET
N of solvents in prediction

set versus the experimental values of it has been demon-
strated in Figure 4.

As can be seen the model did not show proportional and
systematic error, because the slope (a = 1.0444) and inter-
cept (b = 0.0199) of the correlation equation are not
significantly different from unity and zero, respectively and
the propagation of errors in both sides of zero are random
shown in Figure 4. 

Table 2 compares the results obtained using the MLR and
ANN models. The correlation coefficient (R) and RMSE of
the models for total, training, validation and prediction sets
show potential of the ANN model for prediction of ET

N

values of various solvents. 
As a result, it was found that properly selected and trained

neural network could fairly represent the dependence of
normalized polarity parameter on molecular descriptors.
Then the optimized neural network could simulate the
complicated nonlinear relationship between ET

N values and
the molecular descriptors. The correlation coefficient (R)
and RMSE are 0.903 and 0.0887 for the prediction set by the
MLR model should be compared with the values of 0.985

Figure 2. Plot of RMSE for calculated values of ET
N for training

and validation  sets vs. the number of iterations. Figure 3. Plot of the calculated values of ET
N from the ANN model

vs. the  experimental values of it for prediction set.

Figure 4. Plot of the Residual for calculated values of ET
N from the

ANN model vs. the experimental values of it for prediction set.
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and 0.0375, respectively, for the ANN model. It can be seen
from Table 2 that although the parameters appearing in the
MLR model are used as inputs for the generated ANN, the
statistics is shown a large improvement. These improve-
ments are due to the fact that ET

N of the solvents shows non-
linear correlations with the molecular descriptors.

Conclusions

A five-descriptor nonlinear computational neural network
model has been developed for prediction of normalized
polarity parameter for various solvents with diverse chemical
structures using quantitative-structure property relationship.
Comparison of the values of RMSE and other statistical
parameters in Table 2 for training, validation and prediction
sets for the models show superiority of the ANN model over
the regression model. Root-mean square error of 0.0887 for
the prediction set by the MLR model should be compared
with the value of 0.0375 for the ANN model. Since the
improvement of the results obtained using nonlinear model
(ANN) is considerable, it can be concluded that the
nonlinear characteristics of molecular descriptors on the ET

N

values of solvents is serious and interactions between vari-
ous molecular descriptors are important. Then the optimized
neural network could simulate the complicated nonlinear
relationship between normalized polarity parameter and the
molecular structure for various solvents. 
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Table 2. Comparsion of statistical parameters obtained by the MLR and ANN models for correlation of normalized polarity parameter with
molecular descriptorsa 

Model Rtot Rtrain Rvalid Rpred RMSEtot RMSEtrain RMSEvalid RMSEpred

MLR 0.876 0.874 0.871 0.903 0.1025 0.1043 0.1027 0.0887
ANN 0.973 0.971 0.975 0.985 0.0492 0.0510 0.0465 0.0375

a tot, train, valid and pred in subscript letters are referring to the total, training, validation and prediction sets. 


