ing down with ice bath, and quenched with 8 N HCl (8 ml) solution. After removal of solvents, the residue was washed with ethyl ether, providing light-yellow solid, acetic acid of **2a-c** containing NaCl. (Z)-2-(2-Aminothiazolo[3,2-b][1,2,4]triazol-5-yl)-2-(methoxyimino)acetic acid: 2.58 g, 97% (exclude NaCl), mp. 180 °C (dec.); ¹H NMR (60 MHz, DMSO d_6) $\delta 4.01$ (s, 3, OCH₂), 6.29 (bs, 2), 7.56 (s, 1). To phosphorus pentachloride (660 mg, 3.2 mmol) in dried CH₂Cl₂ (10 ml) at -20°C was added crude acetic acid of 2a-c (2.0 mmol). The mixture was stirred at -20 °C for 2 h. 7-ACA (522 mg, 1.92 mmol) in dried CH₂Cl₂ (5 m*l*) and bis(trimethylsilyl)acetamide (BSA, 1.8 ml, 7.28 mmol) was added dropwise, and the mixture was stirred at -20 °C for 50 min and at 0 °C for 2 h. The mixture was poured into cold water. Solid was removed by filtration and the resulting liquid was extracted with EtOAc. Drying (Na₂SO₄) and evaporation of organic layer afforded a yellow solid 1a-c. 1a: 284 mg, 29%, mp. 149-151 °C; ¹H NMR (60 MHz, DMSO-d₆) δ 2.15 (s, 3, CH₂), 3.43-3.62 (m, 2, CH₂), 4.15 (s, 3, OCH₂), 4.78-5.25 (m, 4, NHCHCH + CH₂), 5.83(dd, 2, J = 8.2, 4.8 Hz, CH₂), 7.15(s, 2, 4.8 Hz,NH₂), 8.74 (s, 1, CH), 9.28 (d, 1, J = 8.0 Hz, NH). 1b: 35%, mp. 158-161 °C; ¹H NMR (200 MHz, DMSO-d₆) δ 2.07 (s, 3, CH_3), 3.41 (d, 1, J = 18.2 Hz, CH_2), 3.62 (d, 1, J = 18.2 Hz, CH_2), 4.14 (s, 3, OCH₃), 4.84 (d, 1, J = 13.2 Hz, CH_2), 5.09 (d, 1, J = 13.2 Hz, CH_2), 5.13 (d, 1, J = 4.8 Hz, CH), 5.85 (dd, 1, $J = 8.0, 4.8 \text{ Hz}, CH_2$, 7.57 (s, 1, CH), 8.21 (s, 1, CH), 9.82 (d, 1, J = 8.0 Hz, NH). 1c : 12%; ¹H NMR (200 MHz, DMSO-d₆) 2.10 (s, 3, CH₃), 2.53 (s, 3, CH₃), 3.44 (d, 1, J = 18.5 Hz, CH₂), 3.65 (d, 1, J = 18.5 Hz, CH₂), 4.09 (s, 3, OCH₂), 4.96 (d, 1, J = 13.4 Hz, CH_2), 5.12 (d, 1, J = 4.8 Hz, CH), 5.20 (d, 1, J = 13.4 Hz, CH_2), 5.95 (dd, 1, J = 9.0, 4.8 Hz, CH_2), 7.35 (s,

1, CH), 7.78 (d, 1, J = 9.0 Hz, NH).

Acknowledgement. This work was supported by MOST grants #2N03881.

References

- (a) J. A. Webber and W. J. Wheeler in "Chemistry and Biology of m-Lactam Antibiotics", eds. R. B. Morin and M. Gorman, Vol. 1. Academic Press. Chap. 4, 1982; (b) C. E. Newall in "Recent Advences in the Chemistry of m-Lactam Antibiotics", eds. A. G. Brown and S. M. Roberts, the Royal Society of Chemisty, Special Publication, No. 52, 1985.
- (a) A. Mignot, H. Moskowitz, and M. Miocque, Synthesis 52 (1979); (b) A. Singh, R. N. Handa, and H. K. Pujari, Indian J. Chem. 16B, 475 (1978); (c) Y. Tamura, H. Hayashi, E. Saeki, J.-H. Kim, and M. Ikeda, J. Heterocyclic Chem. 11, 459 (1974).
- 3. K. Pilgram and G. E. Pollard, J. Heterocyclic Chem. 13, 1225 (1976).
- (a) L. A. Carpino, J. Am. Chem. Soc. 82, 3133 (1960); (b) Y. Tamura, J. Minamikawa, K. Sumoto, S. Fujii, and M. Ikeda, J. Org. Chem. 38, 1239 (1973); (c) Y. Tamura, J. Minamikawa, and M. Ikeda, Synthesis 1 (1977); (d) Y. Tamura, J. Minamikawa, Y. Miki, S. Matsugashita, and M. Ikeda, Teterhedron Lett. 4133 (1972); (e) Y. Tamura, J.-H. Kim, and M. Ikeda, J. Heterocyclic Chem. 12, 107 (1975); (f) Y. Tamura, J.-H. Kim, Y. Miki, H. Hayashi, and M. Ikeda, J. Heterocyclic Chem. 12, 481 (1975).
- 5. K. T. Potts and S. Husain, J. Org. Chem. 36, 10 (1971).

Formation Process of a Red Phosphor, Y₂O₂S:Eu³⁺

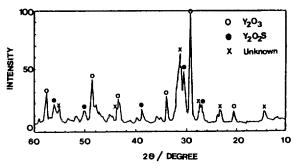
Sun-Il Mho

Department of Chemistry, Ajou University, Suwon 441-749

So-Young Chang, Chai-Ik Jeon, Chong-Hong Pyun, Q. Won Choi, and Chang-Hong Kim

Korea Institute of Science and Technology, Seoul 130-650. Received April 26, 1990

Yttrium oxysulfide incoporated with europium has been prepared by direct heating the mixture of Y_2O_3 , Eu_2O_3 , NaOH(or Na_2CO_3), and S. The reaction of the mixture at low temperatures and treatment at higher temperatures are studied. The formation of Y_2O_2S is completed at lower temperature ($ca.500\,^{\circ}C$) and incorporation of Eu^{3+} into Y_2O_2S lattice proceeds at higher temperature (above $1000\,^{\circ}C$) along with crystal growth. Small amount of the unknown phase considered to be $Y_2O_2S_2$ is formed along with Y_2O_2S in the temperature range from $400\,^{\circ}C$ to $460\,^{\circ}C$.


Introduction

Yttrium oxysulfide incorporated with europium, Y_2O_2S : Eu^{3+} , is widely used as a red phosphor for color monitors because of its bright luminescence and high energy efficiency. ¹⁻⁶ It is usually prepared from yttrium oxide coprecipitated with europium oxide. ⁷ In the present work the reaction of the mixture of Y_2O_3 (neat or $3\sim4$ at % Eu_2O_3 added),

 ${
m Na_2CO_3}$ (or NaOH), and S has been studied in a wide range of temperatures in order to understand the formation and particle growing processes of the host material, ${
m Y_2O_2S}$, and incorporation process of ${
m Eu}^{3+}$ into it.

Experimental

Europium-incorporated yttrium oxysulfide phosphors,

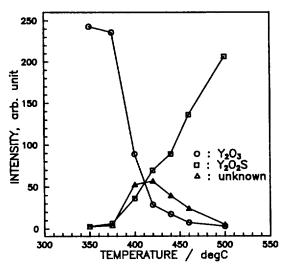


Figure 1. XRD pattern of the reaction product from the mixture, Y_2O_3 : Na_2CO_3 : S = 1:3:17.6 at 400 °C for 1.5 hours.

Y₂O₂S: Eu³⁺, were prepared directly by heating the mixtures of Y₂O₃ (99.99%, Aldrich), Eu₂O₃ (99.99%, Aldrich), Na₂CO₃ (or NaOH, E. P. Kanto Chemical Co.), and sulfur (E. P. Kanto Chemical Co.) of certain mole ratios at desired temperatures. A flux of Na_2S_x ($x = 1 \sim 5$, melting temperature ranges from 200 °C to 950 °C depending on x8) is produced from the reaction mixture at around 270~350°C.9 The yield of Y2O2S was monitored with an X-ray powder diffractometer (XRD, Rigaku, D/MAX-3A, Cu K_a). The XRD peak intensities of Y₂O₂S and Y₂O₃ were measured to estimate the fraction of Y₂O₂S in the product. The particle shapes and sizes of the product were observed with a scanning electron microscope (SEM, Akashi, ISI-SX-30E). Excitation and emission spectra were obtained by the fluorescence spectrometer composed of a Xe arc lamp (120W), monochromators (Oriel, 1200 lines/mm), a PM tube (Hamamatsu R928, type S20), and a microcomputer. Monochromator grating was driven by a stepper motor (16 steps per nm). The spectra were corrected for the system responses.

Results and Discussion

Formation of Oxysulfides. Formation process of Y_2O_2S from $Y_2\mathrm{O}_3$ using $\mathrm{Na}_2\mathrm{S}_x$ flux was investigated by XRD and SEM techniques. The main peaks of Y₂O₃ and Y₂O₂S in the XRD pattern are at 2 θ = 29.3° and 30.6°, respectively. XRD patterns of the reaction products prepared by heating the mixture of Y_2O_3 : Na_2CO_3 : S = 1:3:17.6 in the temperature range from 350 °C to 500 °C for 1.5 hours were taken. There are only peaks of Y_2O_3 and no peaks of Y_2O_2S in the spectra of the product reacted at 375 °C. This means that Y₂O₂S has not been produced yet. Intensities of the peaks corresponding to Y2O3 increase as the reaction temperature increases above 375 °C. XRD spectra of the reaction products obtained above ca. 500 °C show only peaks of Y2O2S and no peaks of Y_2O_3 , which implies that the formation of Y_2O_2S from Y_2O_3 using Na₂S_r flux is completed below 500 °C. XRD spectra of the product obtained between 400 °C and 460 °C show unidentified peaks (d = 3.80, 3.26, 2.86, 2.84 A) in addition to those of Y₂O₂S and Y₂O₃ (Figure 1). The color of the unknown phase is mustard-yellow. The peak intensities of Y_2O_3 (2 θ = 29.3°), $Y_2O_3S(2 \theta$ = 30.3°), and unknown phase $(2 \theta = 31.3^{\circ})$ are plotted against reaction temperature (Figure 2). As the reaction temperature increases, the peak intensities of Y2O3 decrease and those of Y2O2S increase. The intensities of the unidentified peaks increase at first and then decrease. Only peaks of Y₂O₂S are detected above 460 °C.

Figure 2. XRD peak intensities of Y₂O₃ (2 θ = 29.3°), Y₂O₂S (2 θ = 30.3°), and unknown phase (2 θ = 31.3°) vs, reaction temperature.

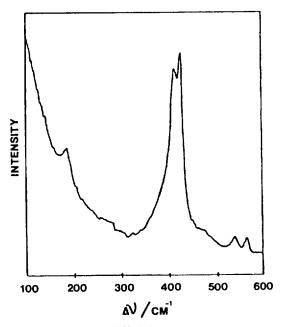
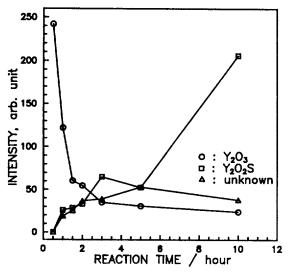



Figure 3. Raman spectrum of $Y_2O_2S_2$.

Since separation of the unknown phase was unsuccessful, an attempt was made to identify it in the product obtained at 400 °C by various methods. Elemental analysis gave the weight percentages of Y, O, S, C, and Na to be 68.73, 18.0, 12.5, 0.94, and 0.31, respectively. Sodium and carbon can be regarded as minor contaminants from the flux. From this it is concluded that the unknown phase is composed of Y, O, and S. When the reaction product is dissolved in dilute HCl solution, H₂S is generated and the solution becomes slightly turbid. When the solution is extracted with carbon disulfide, CS_2 layer becomes yellow which indicates the presence of free sulfur. This implies the presence of the S_2^{2-} in the product. The reaction product gives a doublet at 414 and 427 cm⁻¹ in Raman spectrum (Figure 3), which is similar to the S-S vibrational mode of LaS_2^{10} . From these analyses the unknown phase in the reaction product is considered to be $Y_2O_2S_2$.

Figure 4. XRD peak intensities of Y_2O_3 , Y_2O_2S , and $Y_2O_2S_2 rs$, reaction time.

Also the nature of the unknown phase was studied by fluorescence measurements using europium as a probe. Fluorescence intensity of the reaction product obtained by heating at 400 °C the mixture of $Y_2O_3\colon Eu_2O_3\colon Na_2CO_3\colon S$ at the ratio of 1:0.04:3:17.6 is weak. The fluorescence spectrum shows not only peaks of Eu^{3+} in Y_2O_2S and in Y_2O_3 but also a weak broad band at 650 nm which could not be accounted for.

In order to clarify whether $Y_2O_2S_2$ is formed concurrently with Y_2O_2S from Y_2O_3 , or by further reaction of Y_2O_2S with excess (or unreacted yet) sulfur, XRD patterns and Raman spectra have been examined for the following reaction products. Instead of Y_2O_3 , yttrium oxysulfide was reacted with

sulfur in the flux at 400 °C for 1.5 hours with two different compositions of the reaction mixture, $Y_2O_2S: Na_2CO_3: S =$ 1:3:17.6 and 1:3:52.8, respectively. Neither products shows yellow tint, unknown peaks in XRD pattern, nor Raman peaks, which is indicative of the absence of Y2O2S2. Consequently, $Y_2O_2S_2$ is not produced from the reaction of Y_2O_2S and S. To examine if $Y_2O_2S_2$ is decomposed to Y_2O_2S even at low temperatures, reaction time was varied in series at 400 °C for the fixed ratio of Y_2O_3 : Na_2CO_3 : S = 1:3:17.6. Peak intensities of XRD for Y₂O₃, Y₂O₂S, and Y₂O₂S₂ in the reaction product were plotted against the reaction time (Figure 4). As the reaction time is prolonged, the amount of Y₂O₂S increases, that of Y₂O₂S₂ increases at first then decreases, and that of unreacted Y_2O_3 is reduced. These result in the following conclusions: Both Y₂O₂S and Y₂O₂S₂ are formed at the reaction temperature between 400 °C and 460 °C. The dioxydisulfide decomposes to Y₂O₂S above 500 °C, and partially decomposes to Y2O2S even at 400°C with prolonged reaction time. Only Y₂O₂S is obtained above 500 °C. Dioxydisulfide, Y₂O₂S₂, is not formed from Y₂O₂S even at 400 °C.

Particle size and shapes were observed with a scanning electron microscope in order to study the formation and particle growing processes of Y_2O_2S . Scanning electron micrographs of the products at various reaction temperatures are shown in Figure 5. The particle sizes of the Y_2O_2S (Figure 5c) produced at low temperatures are much smaller than those of the reactant Y_2O_3 (Figure 5a). The needle–shaped particles in the product between 400 °C and 460 °C (Figure 5b) are considered to be $Y_2O_2S_2$. Smaller particle sizes of Y_2O_2S obtained at intermediate temperatures can be explained as follows: The reaction of Y_2O_3 with S starts at the Y_2O_3 surface. Once Y_2O_2S is formed at the surface of Y_2O_3 , it could be cracked due to the difference in densities and formed Y_2O_2S are peeled off. Therefore, sulfur is considered to

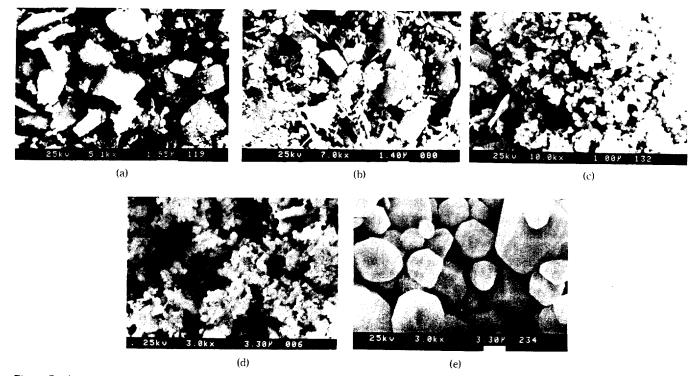
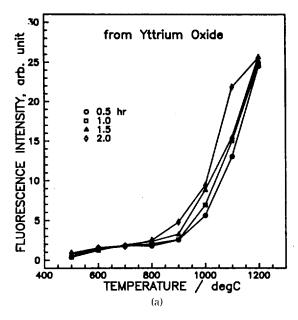
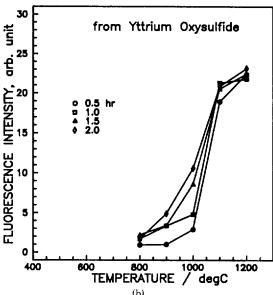


Figure 5. Scanning electron micrographs of the reaction products at various temperatures; (a) 350 °C, (b) 400 °C, (c) 500 °C, (d) 1000 °C, (e) 1200 °C,


Figure 6. (a) Excitation and (b) fluorescence spectra of Eu³⁺ in Y_2O_2S .

react always with new Y2O3 surfaces, and in this process diffusion of S into Y₂O₃ particle is unnecessary. Particle growing of Y₂O₂S is observed above 1000 °C (Figure 5d). At high temperatures above 1000 °C, small particles may dissolve and recrystallize on the larger ones, leading to growth of particles. The sizes of Y₂O₂S particles heated at 1200 °C are larger and their surfaces become smoother (Figure 5e).

Incorporation of Eu^{3+} into Y_2O_2S and its Fluorescence Intensity. Excitation and fluorescence spectra of Eu³⁺ in Y₂O₂S are shown in Figure 6. When Y₂O₂S particles are small, i.e., when the reaction temperature is low (below 1000 °C), the fluorescence intensity is very weak. This could be explained by incomplete incorporation. Fluorescence intensity is high when the sample is prepared above 1000 °C, where the particles are larger (Figure 7a). Europium can be incorporated into Y₂O₂S not only by diffusion from the Y₂O₂S surface but also by recrystallization from the melt on Y₂O₂S crystals. In order to study the effects of each process, the fluorescence intensities of Y₂O₂S: Eu³⁺ (3%) prepared by two different routes were examined. Firstly, fluorescence intensities of Eu³⁺ of the reaction products by heating the mixtures of Y_2O_3 (containing 3% Eu₂O₃): NaOH: S = 1:7.9:19.7 at temperatures from 500°C to 1200°C for 0.5 to 2 hours were measured (Figure 7a). In this case, Eu³⁺ is incorporated into Y₂O₂S structure both by diffusion and by recrystallization from the melt. Secondly, Eu³⁺ is incorporated into larger grains of Y_2O_2S by heating the mixtures of Y_2O_2S : Eu_2O_3 : NaOH:S = 1:0.03:7.9:19.7 at temperatures from $500 \,^{\circ}C$ to 1200°C for 0.5 to 2 hours. The larger grains of Y₂O₂S were prepared by heating mixture of Y_2O_3 :NaOH:S=1:7.9:19.7 at 1200 °C for 2 hours. Fluorescence intensity of Eu³⁺ of each product is shown in Figure 7b. In this case incorporation of Eu3+ into Y2O2S occurs only by diffusion from the Y₂O₂S surface unless the solubility of Y₂O₂S in the flux is appreciable, since larger grains of Y₂O₂S are used.

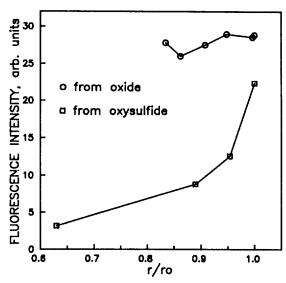

Both $Y_2O_2S:Eu^{3+}$ prepared at $1200\,^{\circ}C$ for 2 hours from Y₂O₃ and from Y₂O₂S were etched in 1M HCl solution to dif-

Figure 7. Fluorescence intensities of Eu³⁺ in Y₂O₂S prepared at different temperatures for 0.5–2 hours (a) from Y₂O₃ and (b) from Y₂O₂S as starting materials.

ferent degrees by controlling the etching time and fluorescence intensities were measured. The fluorescence intensities are plotted against the particle radius(r) derived from the weight (w) by the equation, $r = (3w/4\pi d)^{1/3}$, where d is density, assuming spherical uniform particles (Figure 8). Fluorescence intensities for Y₂O₂S:Eu³⁺(3%) prepared from the grown Y₂O₂S decrease exponentially as the surface of particles are etched away. This means the Eu³⁺ concentration decreases inside the particle exponentially and confirms that Eu³⁺ is incorporated by diffusion. Fluorescence intensities are the same inside the particle for Y₂O₂S:Eu³⁺(3%) produced from Y₂O₃, which means that Eu³⁺ are incorporated homogeneously inside the particles, where the incorporation of Eu3+ into Y2O2S proceeds via recrystallization from the melt rather than by diffusion.

Figure 8. Fluorescence intensities of Eu³⁺ in Y_2O_2S prepared from $Y_2O_3(O)$ and from $Y_2O_2S(\Box)$ vs. degree of etching. The r_n and r represent radii of phosphor particles before and after etching, respectively.

Fluorescence intensities of $\mathrm{Eu^{3+}}$ in $\mathrm{Y_2O_2S}$ heated at temperatures below $1000\,^{\circ}\mathrm{C}$ by either method are too low to be used as a red phosphor (Figure 7). For $\mathrm{Y_2O_2S}$: $\mathrm{Eu^{3+}}$ (3%) prepared from $\mathrm{Y_2O_3}$ as a starting material, the fluorescence intensities increase as the reaction temperature varies from $1000\,^{\circ}\mathrm{C}$ to $1200\,^{\circ}\mathrm{C}$. On the other hand, for $\mathrm{Y_2O_2S}$: $\mathrm{Eu^{3+}}$ (3%) prepare from the grown $\mathrm{Y_2O_2S}$ as a starting material the fluorescence intensities are about the same for the products reacted at $1100\,^{\circ}\mathrm{C}$ and at $1200\,^{\circ}\mathrm{C}$. Also, we found that fluorescence intensity of $\mathrm{Y_2O_2S}$: $\mathrm{Eu^{3+}}$ (3%) prepared from $\mathrm{Y_2O_3}$ is stronger than that from $\mathrm{Y_2O_2S}$ grown at $1200\,^{\circ}\mathrm{C}$.

Conclusion

Formation of Y_2O_2S is completed at lower temperature (cu.

500 °C) and incorporation of Eu³+ into Y₂O₂S proceeds at higher temperature (above 1000 °C). The second phase, presumably dioxydisulfide, Y₂O₂S₂, is formed along with Y₂O₂S between 400 °C and 460 °C. Dioxydisulfide decomposes slowly to Y₂O₂S even at 400 °C. Only Y₂O₂S is obtained above 500 °C. Particles of Y₂O₂S produced below 1000 °C are much smaller than those of the starting Y₂O₃. This suggests that Y₂O₂S formed at the surface of Y₂O₃ by the reaction with Na₂S₃ flux are peeled off due to the difference in densities. Consequently, fresh Y₂O₃ surfaces are exposed to sulfur and the formation rate is high. Particles of Y₂O₂S grow above 1000 °C, and are larger with smoother surfaces at 1200 °C. Europium is incorporated homogeneously through recrystallization from the melt at 1200 °C rather than diffusion.

Acknowledgement. This work has been supported in part by the Korea Research Foundation (1987), the Ministry of Education, Korea.

References

- 1. M. R. Royce, U. S. Patent 3,418,246 (1968).
- 2. P. N. Yocom, U. S. Patent 3,418,247 (1968).
- O. J. Sovers and T. Yoshioka, J. Chem. Phys., 49, 4945 (1968).
- L. Ozawa and P. M. Jaffe, J. Electrochem. Soc., 118, 1678 (1971).
- 5. L. Ozawa, J. Electrochem. Soc., 124, 413 (1977).
- O. Kanehisa, T. Kano, and H. Yamamoto, J. Electrochem. Soc., 132, 2023 (1985).
- 7. M. R. Royce, U. S. Patent 3,423,621 (1969).
- 8. G. Smith ed., Phase Diagrams for Ceramists, vol. V, p.297. American Ceramic Society (1983).
- 9. C. H. Kim *et al.*, to be published.
- Yu M. Golovin, K. I. Petrov, E. M. Loginova, A. A. Grizik, and N. M. Ponomarev, *Russ. J. Inorg. Chem.*, **20**, 155 (1975).