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We present a brief account of the theory of diffusion-influenced kinetics of reactions involving polymers. The
review will be based on the recent contributions from the authors. Both intrapolymer and interpolymer
reactions are considered, and the effects of various physical factors, such as the chain length, chain stiffness,
and hydrodynamic interactions, are described within a unified theoretical framework.
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Introduction dynamics simulations.
Investigations on reactions between polymers have also

Chemical reactions between functional groups on polymeribeen made for a number of situations. de Gennes discovered
molecules are ubiquitous in many applications. Terminatiora regime of time-dependent reaction rates with and without
in radical polymerization, crosslinking of polymer gels, andthe effects of entanglementsOshanin and his coworkers
reactions involving biopolymers such as proteins and receptotsave made investigations on trapping reactions involving
are a few examplés. In spite of their practical importance, polymers in two and three dimensidAsand summarized
understanding of the principles behind their reaction kineticthe many-particle effects occurring in various polymeric
is still in a primitive stage. This is due to the difficulty arising reactions® Reactions at polymeric interfaces were studied
from the strong constraint of chain connectivity as well as oextensively by O’Shaughnessyall’ and by Fredricksoff.
chain entanglements, leading to a deviation of the dynamics In this review, we present a brief account of the theory of
of reactive groups from the free Brownian motion. It is in diffusion-influenced kinetics of reactions involving polymers,
contrast to the reaction kinetics of small molecules, whictbased on the recent contributions from the authors. In
have been studied extensively for many yéars. particular, we show that for both intrachain and interchain

Much attention has been paid to the intrachain reactions gtactions, the reaction event and the inherent polymer dynamics
polymers because such reactions occur in a variety of reactirigan be decoupled approximately in many cases. The effects
polymer systems and measurements of the intrachain reactiaf various physical factors, such as the chain length, chain
rates provide valuable information on the conformationalstiffness, and hydrodynamic interactions, on the reaction
structure and dynamical behavior of polymer chafha kinetics can thus be described within a unified theoretical
general theory for describing the diffusion-influenced kineticsframewaork.
of intrachain reactions was first advanced by Wilemski and
Fixman/ By utilizing a factorization approximation (also Intrachain Reactions
called the closure approximation), they could derive analytic
expressions for the reaction rate and the time-dependentFigure 1 illustrates schematically a typical intrachain
survival probability of unreacted polymer for several typesreaction. For simplicity, the polymer is modeled as a chain of
of intrachain reactions. More specific aspects of thespherical beads connected by harmonic springs. As shown in
intrachain reactions have been investigated also. Friedmahe figure, we consider the general case in which the reacting
and O’Shaughnessy developed a renormalization grougroups are located at any position on the chain. Most previous
method for calculating the cyclization rates of chain polymerdheories dealt with the case where the reaction occurs
as a function of reactive group locations along the backbonebetween the reacting groups at the chain ends. Although we
Stampe and Sokolov investigated the effects of electrostatiwill use the terms tailored for a simple cyclization reaction,
interaction between the charged end groups on the cyclizatidhe theory can also be applicable to intrachain energy trénsfer
rate? Dua and Cherayil considered the effect of backbonend the excimer-formation reactwith a little modification.
rigidity on the dynamics of chain closufeéBandyopadhyay Derivation of the Rate ExpressionsLet wo(rN+1, t) be
and Ghosh utilized a non-Markovian reaction-diffusion the probability density for the polymer being in the open
equation to investigate the memory effect in the fluorescenctrm, with theN + 1 beads constituting the chain located at
resonance energy transférRey and Freiré and more rN+1E(r0,r1,...,rN).Similarly, We(x"*1,t) is the probability
recently Podtelezhnikov and Vologodskiinvestigated the density for the polymer making a ring due to the bond
effect of excluded volume interactions by using Brownianformation between théh andjth beads, with theN +1
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flows and forces are absent, it is clear tRg{(r;, r;, t) and
R (ri, rj, t) depend only ofR( = |r; —r;| )

— OO L

- PO(rIY i ) =V PO(Rr t) '

V'PR(R 1) . (7)

PR(rIY i’ )

Po(R, D)[Pr(R, 1)] is the probability density for the polymer
Figure 1. Pictorial representation of the reversible cyclization being in the open [ring] form at timewith the distance

reaction. The bond forms between itheand thgth monomers. between théth andjth beads being given By Hence, Eq.
(6) reduces to

beads located at" —(xo, Xy .-, Xy) - The probability a _
density functlonL/Jo(r t) evolves in tlme according to Po(R 1) = L(RIPo(R 9
—KiS(R)Po(R ) + K, S (R)PR(R. 1) . (8)

Lyt = L e Y
Here, L(R) is an effective thermal operator governing the

—Id N 1Rf(rN * l|xN+ l) L/Jo(rN t1t t) reaction-free evolution &?o(R, t), whose explicit expression
need not be known at the moment.
+J’de+ RO Y @M ) 1) If the vibration of the ring-forming bond is very fast, the

deviation ofPr(R, t) from the internal equilibrium distribution
Here L(rN+1) is the Smoluchowki operator governing the PR(R) should be negligible, so that we can write
thermal evolution of the open-chain distribution in the
absence of reaction. The sink functidR@ndR: represent P(R, 1) OPE(R)Sk(t) . 9
the inherent rates of bond formation and dissociation at the
bead configurations given by'** andx*?, respectively.  x(t) is the probability that the polymer is in the ring form at
We assume that they have the simple forms given by timet. With this approximation, Eq. (8) can be rewritten as

R(r™ ) = S H e -, ZPo(R 1) = LRIPG(R 1

ROCIETD = SeEHar™ =6, @) K SRIPG(R )+ K S(RPERIS() . (10)

whered(r"* =x"* 1) = &(r 9—x,) ... (r y—X,) . Equation (2)
tells us that the inherent bond formation and d|3$00|at|onmegratIngl Eq. (10) over (i.e, over the relative separation

occur so rapidly that the polymer conformation does noPnd orientation of théh andjth beads), we obtain the rate

change much during the course of the reactive transitions. equation as
With Eqg. (2), Eq. (1) reduces to
o E 0 d—tso(t) = —Kk[dRS(RIPo(R )+ K {1-Sp()] . (11)
A N+1 _ N+1 N+1
afolt 0= HEelr Y Here So(t)[= 1-Sy(t)] is the probability that the polymer is

N+1 N+1 N+1 N+1 in the open form at time andk;" denotes the equilibrium
S+ SR @) rate constant for the bond-dissociation:

We now assume the following sink functions:

+ t) = [dRP,(R, 1), 12
N k'Y = k [dRS(R)PR(R) . 13
§(YN 1) - KrS’(|ri_rj|)- (5) r r_r Sr( ) R( ) ( )
With these sink functions, integration of Eq. (1) over ( We assume that initially the polymer is in the equilibrium
v Ticty Tis1y oo Tja, T, .0 ) QiVES configuration of the open chain:
J
570 (a1 ) = L'(ri PG (ri, 1y, 1) S(t=0) =1, Po(Rt=0)=P5i(R). (14)

—kS(ri—r) Po'(ri, 1, ) + K. S(ri—r ) Pr (ri,r;,t) . (6) For this initial condition, Laplace transformation of Eq. (10)
yields the following perturbative solution:
Po(riur [ Pe(ri,r ;»t)] is the probability density for the R . .
polymer being in the open [ring] form at timeavith the IdRSf(R)PO(R, 9 =s J’dRS(R)PO(R)
ith andjth beads ati andrj. L'(r;,r;) is the reduced .0 R .
Smoluchowski operator governing the thermal evolution of —K;S ET[dRSf(R)J’dROG(R, 9 R)S(Ry) Poq(RO)
Ry(ri, rj, 1) in the absence of a reaction. When the external
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—k[dRS(R)[dR,G(R, § R)S(Ry)
* JORGG(Re S| RIS(RIPE(R) + -

+ SO JIRSRIRC(R 3 RS (RIPE(R)

—k[dRS(R)[dR,G(R § R)S(Ry)
< JORG(R SIRISRIPRR) + 0. (15)

We denote the Laplace transform of any functitih as
f(s) . In Eq. (15), the Green'’s functidB(R, S R,)
by

1 dR-Ry)
s-UR amr?

G(R §R) = (16)

By using the decoupling approximation suggested by

Weiss?! we can resum the series solution in Eq. (15) as
JARS(RIPo(R, 9 1 Vi_Ki DA

S 1+ kDy(s)/V

Dr(s)

+ K S S)——=——,
S )1 + K;iDy(s)/ Vs

17

where

Vi = [dRS(RIPGY(R), (18)
Dy(t) = [dRS(R)[dR,G(R IR)S(R)PH(Ry).  (19)
D,(1) =[dRS(R)[dR,G(R I R)S(R)PRIRy).  (20)

On the other hand, Laplace transformation of Eq. (11)

gives
KfdRS(RIPo(R 9-K Ts " ~So(9)] = 1-s%(s) . (21)
Substitution of Eq. (17) into Eq. (21) finally gives

S(9) =5 —S(9)

KT oD eq eqef DO D9 T
Yl iyl k{Df(w) D(w)}%
(22)
where
= KfdRS(RIPGI(R) = KV (23)

Note thatDy(«) = V¢ and,(«) = V,[dRS(R)PR(R).

is defined
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with
R(t) = [dRS(R)[dR,G(R { R)P&I(Ry).

At long times, when the equilibrium state is restored, we
should have

I|m SR(t)— I|m SSQ(S) —qu & =, (25)
However, neither of the solutions given by Eqgs. (22) and (24)
satisfies this requirement in general. We can remedy this
problem immediately. When the system is restored to the
equilibrium state, we should ha®(R, ) = Po(R)S5'  and
Eq. (10) reduces to

KS(RIPS(RIS = K S(RPR(RAIS'.  (26)
With this detailed balance condition, Eq. (22) becomes

-1
eq O

ki
0, jeesbi(s) + K89 . 27)
0

SR(S)_ |:J+l§Df( )

One can immediately see that Eq. (27) satisfies the equilibrium
condition given by Eq. (25).

In contrast, the WF solution cannot be saved by the above
detailed balance condition. The reason is that in the WF
theory a couple of approximations were made at the stage of
Eq. (3). First, (rN*1y was set equal to a constant
Second,L/JR(r ,t)  was approximated y’(r™* 1) Ss(t)
where L/JRq(I’ 1) is the equilibrium chain distribution
function for the ring polymer. Thus, one can easily see that
the WF solution is regained from our solutiors{R) is set
equal to unity.

When the sink functions can be modelee&&mctlons Le.,
when§(R)=S.(R) = &R- a)/(4n0) 1, Eq. (27) reduces to

1n W
S s+ KsG(0, s|o) +k;

Sk(s) = (28)

It should be remarked that the decoupling approximation of
Weiss becomes exact in tliigunction sink case.

The Green’s Function To calculate the intrachain reaction
rate between two reactive groups on a polymer, we need an
explicit Green’s function expression for the relative motion
of the beads carrying the groupghe absence of reaction

To the best of our knowledge, only the Green’s function
for the end-to-end motion of a polymeric chain has been
given in the literature. For the free draining Rouse chain, the
following expression has been derived by Wilemski and

Equation (22) is the key result of the formalism developedFixmarf using the boson representation method and also by

in this section. This can be compared with the WF résult:

&9 = s SR,
SO

OM

-1
+K qkeq[Df((s)) _V; R(s)}é (24)

Doi?? using the more straightforward integration procedure:

0 3 [R-@)R°D

P [1-F®)] O
(29)

Here,R is the end-to-end vectos - ry, andL?(=NE’) is the

/2
o3  d?

SRR gl
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equilibrium mean squared end-to-end distance vath H is the matrix describing the pre-averaged hydrodynamic
denoting the equilibrium mean squared length of a singlénteraction between the beads that is given by
bond of the Rouse chaigt) is given by

8 1 0 d(_nDZ %ll (i=j)
A = 3 3 TR A= O =D& (i #]) 7
(k=01 .. N) ) b6l i1

where ;= kgT/ D, denotes the friction coefficient for a
single bead, ang is the solvent viscosity.

Let Q denote a matrix whos&l+ 1 columns are the
eigenvectors of the matrkt - A, so thatH - A is diagonalized
by the similarity transformation:

wheretl is the characteristic diffusion time scale defined by
t, = b /D,, andD; is the diffusion constant of a single
bead. The expression fgft) given in Eq. (30) is valid only
for largeN. A more accurate expression fdt) is**?®

o) = N(N+ )2

2 kD/\R 4%“’( SR QUHIAM = A with Aj=A5,.  (38)

whereAE(k =0,1, ...,N) isthe Rouse eigenvalue given by Zimm showed that the same matfixcan also be used to
diagonalizeH and A separately, though not by similarity

= 2] k[ (&4
AR = 4sirf BN+ DO (32) transformationg’
Note that in Egs. (30) and (31) summation includes only the QT [AQ =M with M;= g9,

odd values ok.
In Ref. 20, we derived a more general expression for QHM T =AM ™ =N with N;; = v;0; = (A/14);
G(R,t|Ry) with R =r;—r; (0<i<j<N). We also (39)
took into account the dynamic effects of hydrodynamic
interactions among the beads. The analysis was based on t 'ﬁ'
Rouse-Zimm model of a linear chétin this model, the

-1T

ence by introducing the normal coordinatggs$ (Qkx Oky
3)} defined by

potential energy of the chain is given by (= g Q% » (40)
WheT=25 (ror =3 S XIAX,, (39) .
B T opas 2. <. v Eqg. (36) can be rewritten as
whereA isthe(N + 1) x (N + 1) matrix given b d + NoTg
(N+ DN+ 1) matrixgiven by 2w@"*9=0,5 v J+2a.%d—ﬁmiw} @
r T = i
1-10 0...000O0 R a1
-12-10..000 where a; = (3p)/(2b7) andy™ " =(do, 0y, ---,0y) - Except
for gqo which corresponds to the center-of-mass motion, the
0-12-1..000 . . .
0 0 —12 00 0 normal modes are over-damped harmonic oscillators with
A= |- T o oo (34)  force constants@ksT and diffusion constant,vi.
Dol AR From Eg. (40), we have
00O0O0..2-10 N
0000..-12-1 R=r-r = 2 &% (42)
0000..0-11 _ ) _
- - with ¢, = Qik—Qj - Note thatco =0 sinceR should be
andX, is the N + 1)-dimensional vector defined by independent of the center-of-mass coordinates. Hence the

Green'’s functionG(R, t|R,) can be expressed as

%00 YoQ o0
l% 1% %ﬂ N+1p, N+1
x,= 00 x,=B"0 x,=F' @5  G(RURY)=N[dg" "[da} 552 6i— RD
00 L' O L' O
t b e N+1,, N+1y s N N+ 1
with the superscript denoting the transpose. x Ge(a™ " tlao )C‘H;quio ODﬂeq(qO ). (43)

In the absence of reaction, the probability density function a1
N+1 +

t,U(r t) for theN + 1 beads being located ** = ro(ri, Here,Ge(q ", t|gy ) isthefull Green S functlon for Eq.

..,rn) at at timet evolves as (41) satisfying the initial COI’]dItIOI‘GF(q L= 0|q0 1)
oy _ nd d %ﬂi 3nd d = 1 o(g; — Qi) - Ye (q ) is the equilibrium distribution
_dty-l_ Dy _Xz iD?XyD H Xy% p2LOX HIAX Y il:lo ° 4

(36) function, andN is the normalization constant.
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First, t//eq(qN+l) can be obtained easily by solving @=-hy/hy, and Eq. (51) becomes
2 03[R—¢R)°
N[y 0 _ G(R,tRo) = D—--B—-— expo———5- 0
2V aqeq+ 2“'%"5 Eq"/’eq} =0. @44 ° “An P RRmLAn
| (52)
We have We can relatepto <R(t) - R(0)> by
N+1 3/2
Wed' ) =V Ilfll(“/”) expl-aid),  (45) TR() R(0)C= [AR[AR,R (RoG(R, IR)PS(R,) = R’
(53)

whereV is the volume of the system. The normalization
constantN appearing in Eqg. (43) is obtained by requiring
thatIdRG(R t|R,) =1 . Fort = 0, this requirement on Eq.

Finally, after some algebra, we can show that the
equmbrlum mean squared distance betweentth@ndjth
beads,[R°0 , and the normalized time correlation function

(43)gives of the vectoR, t), are given b
g y
L1 d O N N 2
Nfdg" 1803 o —RiWeg(d" ) = 1. (46) RO= b2y % = fijlb?, (54)
0% O k=1Hk
N
With the expression foweq(qN+1) in Eq. (45), we have @t) = R(t D? Q)0 || JI > m exp( AVt) ,  (55)
RO —Jk=1

z C/GD expE}—RO/zlc /CY|D: ROAR,) . (47)  wheret; = b%Ds. The equilibrium distribution function for

ok the distanc® is given by
Next, EQ. (42) shows th&is a Gaussian random variable. 2 3R? O
Hence the reduced Green's function (RGEJR, t|R,) PoI(R) = Pa(R) = 03 exp[-}— ~0.  (56)
should be a Gaussian function with respect to BatindRo: SR (R’
01 An expression for the orientation-averaged Green'’s function
G(R,t|Ry) =N exp[y—é[R H, R G(R 1 R)) can be readily obtained from Eq. (52):
U
0 G(R {R) = 3 %1
+ 2R H, [Ry+ Ry [Hy ERO] E (48) IZQHDR [ﬂl (Dz(t)] 0 ATIRR,¢(t)
whereN is a normalization constant, ahl(i = 1, 2, 3) is a <oy 0 3 [R-@t)R] E
time-dependent matrix. For an isotropic system, 0 02RO [1- (02(0] 0
G(R, t|R,) depends on the magnitudeoéndRy and on
the relative angle betwedh andRy, but is independent of 0 3 [R+ @R’
. = . —ex 0. (57)
the respective orientations & and R in the laboratory 02RO [1- (02(»{)]
fixed frame. Hencdyli must be proportional to unit matrixe.
H; = h;(t)l. For the free-draining Rouse chain, more explicit expressions
In addition, the RGF satisfies the following properties:  can be obtained. In this case, we havefer 0, 1, ..., N
_ 2] KT
JdRG(R, t|Rg) =1, (49) A = Hg= 4sin @(N+ Do
JdRoG(R, t|Rg)P5{(R,) = PSI(R) (50) Re 2@ (i+j+ ”kani (i—j)knJ (58)
KT 0N+ 10 S 2(NT 1) 2(N+1) ]’

where PO(R) is the equilibrium dlstrlbutlon From Eq.
(49), we can show thad = (/232 and h3 = h;h, , so that
Eq. (48) becomes

with the superscripR denoting a quantity for the free-
draining Rouse chain. In particular, when the reaction occurs
between the beads at the chain endsi & 0, and = N), we
EE 3/2 have (R°0= Nb° , and the expression f@(R,t|R;)
G(R,t|Ry) = expD——[R +h,Ry/hy ] D, (51) reduces to that given by Egs. (29) and (31).
Effect of Chain Stiffness The effect of chain stiffness can
be incorporated into the present theoretical framework by
At long times, we must havdﬂl(oo) Y[R D-Eh1 and adopting the optimized Rouse-Zimm (ORZ) mddethe
h,() =0, since lim G(R, t|R,) = Pg YR) and R% = ORZ model differs from the Rouse-Zimm model in that the
dRR qu(R) t-e bond angles are fixed; see Figure 2. The chain stiffness does
From Eq. (50), we can obtaih, = h;/(1— (p) with not affect the inherent reaction step, so that its influence is
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N ss . s _
R=ri-r; =kz alx  with  ¢,=(Qg;—(Q9y - (60)
=0
Then the expressions for the Green’s functions given by
Egs. (52) and (57) remain the same, but with the expressions
for (R0 andgt) given by

li=jl
R0= -l $9- A= e
1-q li-jl(1-q)

Figure 2. The optimized Rouse-Zimm model of a linear chain. The b2 N (CS)Z
bond angles are fixed at a constant vé#lue ot) = — 3 —ks-exp(—3)\ft/tl) . (62)
ER Dk =0 I’lk

reflected only in the nonreactive chain dynamics.

The evolution equation governing the random thermal Intrachain Reaction Kinetics. We have set up the
motion of the chain is again given by the Smoluhowskitheoretical apparatus that can be used to analyze the time-
equation as given by Eq. (36), but with h@ndH matrices  dependent kinetics of intrachain reactions. One can now

replaced by investigate the effects of various physical factors, such as the
chain length, chain stiffness, and hydrodynamic interactions,
E 1 —(1+09) q 0 within a unified theoretical framework. Some of the results
01 242 2 _(1+q) have been presented in Refs. 19 and 20.
O (1+g)2+29+a” ~(1+0q) q A useful experimental technique for probing the dynamical
E q —(1+q)2 2+ 2q+2q2 —(1+q)2 properties of a flexible chain polymer is to measure the time-
_. 10 2 2 dependent intensity of fluorescence emitted from a fluorophore
As= 1—q2E 0 q —(1‘+q) (2+2q.+2q ) attached at one end of the chain, which is sensitized by an
0 : external illumination and quenched by an energy acceptor
o O 0 0 0 located at the other eAtiTime-resolved fluorescence data
E 0 0 0 0 are most commonly obtained by exciting the reaction system
0 o 0 0 0 with a short pulse of light and thereafter measuring the time-

dependent fluorescence emissibiiowever, the excitation

0 0 o O light pulse has a finite time span so that an extensive
0 0 0 0 deconvolution of the data needs to be carried out. Even if one
0 - .
0 0 o O uses a picosecond laser, the observe_d instrument response
O function often spans over 0.1 ns. Hence it can be rather difficult
0 0 0 O to obtain adequate resolution. An alternative method is to
: : : E measure the frequency response of the emission to intensity-
2 2 O modulated light. This method, called the frequency-domain
' 2+2q+22q ~1+a) ) q E fluorometry, is known to have high sensitivity to resolve
—(1+0q)" 2+29+q H1+q)[ the complex decay of fluorescence intensity. It was first
q —(1+q) 1 U implemented by Gratton and Limkenféand has been widely
Z applied by Lakowicz and GryczyngRiln particular, Lakowicz
1

—_— (59) et al used the method to investigate the intramolecular energy
17(6713 ERﬁD1L ) transfer reactions occurring in flexible molecutes.

) ) ) In Ref. 19, we presented a theory for analyzing the

whereq = ~cos9 with & denoting the bond angle (see Fig. 2), frequency-domain fluorometric experiments on intrachain

and we have put the subscript "S” to the matrices 10 orescence-quenching reactions occurring in flexible chain

designate the quantities for the "stiff” chain. polymers. The results were applied to investigate the qualitative

The procedure to get the Green's function expressiolienendence of the modulation and the phase angle on the
follows the same line as in the previous subsection. Let Ush;in length of the polymer.

(He); = & +(1-3j)

introduce the following notations: In Ref. 20, we formulated a general theory for analyzing
3 _ S A ) . e ) ) .
Qd HAMs=As with (A S)” =08 the klnetlc_s of mtrac_haln excimer fo_rmatlon_ reactions. Whlle
T _ s most previous theories for intrachain reactions dealt with the
Qs[As@s=Ms  with  (Mg); =4, end-to-end reaction case, we considered the general situation
-1 -1T -1 i i i iti
Q' H @ =AsMg =N, in Whlch the reacting groups are located at any _p03|t!on on
. s S the chain backbone. Various aspects of the reaction kinetics,
with (Ng); = vi'g; = (A7) G;; such as the effect of hydrodynamic interaction and the

N s, dependence of reaction rate on the positions of reacting groups
r = kzo (Qs)i Ak as well as on the chain length, were investigated.
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A A the beads, so that the sink functions are assumed to have the
B B following forms:
" Mn NA+ 1 NB +1
v -~ SN = Kot an—Ten) . (64)
Mm 'Mn N, +1 N i1
S e ™) = KO am—Tan) - (65)

Since we cannot keep track of the fate of individual chains,

Figure 3. Pictorial representation of an interpolymer reaction. TheWe introduce the reduced distribution functions (RDF):
bond forms between theth monomer of polymer A and theh

monomer of polymer B. Ca(famt) = IdrA l/fA NA 1, 1), (66)
Interchain Reactions N+l No+d
Cap(ram e ) = z ZIdrAIdrB Ynp(ra® ore® 1),
i=1j=1
In this section we will consider a typical interpolymer " (67)
reaction, as illustrated schematically in Figure 3. Theories Net1 Nesd
for other types of interpolymer reactions can be formulated C.(ramfgnt) = z z IdrA IdrB e, (ra® “rg® 0,

in a similar way**> Again, we model the polymer as a chain i=1j=1
(68)

of beads connected by harmonic springs. We consider two N
different kinds of linear polymers, A and B, witNA(+ 1)  where[dr," denotes the my\tegratlon over the bead coordinates
and (s + 1) beads, respectively. We assume that the chain &Af A ‘exceptram, and J’drB is defined similarly. In a
has a single reactive group at thiéh bead, while the chain B homogeneous and isotropic reaction system, the number
at thenth bead. density field of A,CA(r o t) , IS independentiof, and can

Derivation of the Rate ExpressionsWe consider a be equated with the bulk number density, and the two-
reaction system containiga chains of the type A aridls particle RDF depends only the separation of the reactive
chains of the type B. To describe the reaction kineticdeads, namelCag(r am e t) = Cag(r =|f am=Tad: t)
systematically, we introduce a set of hierarchical kinetic With Egs. (64)-(67), integrating Eq. (63) over the
equations describing the reaction-diffusion process of thé@relevant coordinates and then summing the resultant
chains. The lowest-order equation in the hierarchy is given byequation over from 1 toNa gives

Nat1 NA+1

Np+
L (0 = Lo Sa() = -So(t)= ~KCasO)+KC() . (69)
—< (dr NB+1§( Na+1 NB+1)L/J (rNA+1 NB+1t) In writing Eq. (69) we identifiedCq(r om Mgn="1amt)
ZI ’ AB; e with the bulk number density of the product polyme(s,
sincergn=ramin all C molecules (as assumed in writing the
Np+1 NB+1 NA+1 Ng+1 sink functions) andC(r oy ren=ramt) is independent of
Zj’dr S?( ’ )% Ts o) - (63) Iamin a homogeneoucs s/;ns]tesr?t A
o1 The kinetic equation folCag(r, t) can be obtalned by
l,UA(rAA 1) is the probability density for th¢h chain of integrating the evolution equation fap, B(rA g )
A bemg in the unreacted form at tlrmeW|th the Na+ 1 over the irrelevant bead coordinates and then summing the
beads constltutlng the chain locatecr a‘t = rpo,(aL - resultant equation over the reactant molecule indiaes)].
rang. Ya B( A t) is the joint probability density In the pseudo-first order case, where one species of chains
that both theth chaln of A and thgh chain of B are in the (say B) are present in excess over the other, we dbtain
unreacted form at timg with the beads constltutlng the
chains located atA g r&o, rat, .. rA.\L\) andrB g ( g0, EtCAB(r’t) = Lag(r)Cag(r,t) + O(r)[—k;Cag(r,t) + k,.c(1)]
rgy, ..., MBrg). Similarly, e, (rA a*1 Bt 1) is the probability
denS|ty for these chains; And B makmg a bond between —KiChgg(r, 0, 1) + K, C5(r,t) (70)
the mth bead of Aandnth bead of B with beads located at
(r A , g ) The first term on the right side of Eq. (63) whereLag(r) denotes an effective thermal evolution operator
represents the change due to random thermal motion of tHer the RDF Cag(r, t) in the absence of reaction, whose
chain A. The second term represents the change due to thexplicit expression need not be known at the moment. The
bond formation between the chainsafxd B, while the third  second term on the right side takes account of the changes in
term represents the change due to the reverse dissociatidbug(r, t) due to binary reaction events. When the reactant
The sink functlont=,§(rA rB ) d:'?(rx A BB+1) number densities are small, only the binary reaction events
denote the respective reactive transmon rates at the comre important and it is less probable that two or more reactant
flguratlon(rN L S*l) . molecules of one species compete for a target reactant
We then neglect the excluded volume interactions betweemolecule of the other species. The third and the fourth terms
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arise from the competitive participation of a third chain of Bwhere Cg = Cg+ (KK and¢(t) s the rate coefficient
in the binary reaction event. The three-particle RIAEH(r, for the irreversible reaction. In the Laplace domain it can be
r', t) is the product o&(t) and the number densities of chains expressed as

of B, whose reactive groups are separdigd andr' from s Ked

that of an A chain, an@; ,(r,t)  is the two-particle RDF for ki (s) = i . (77)
A-B chain pairs with Adenoting an A captured by a third s[1+kG(0, 5|0)]

chain of B.

We can now calculate the time-dependence of reactant

Eq. (70) for Cag(1, ) is coupled with those foCagslr, T, number densities once the Green’s function expression is

t) and C;4(r,t) . The evolution equations for these RDFs

are in turn given b given.
9 Y The Greens Function In this subsection we will derive
d an expression for the Green's functids(0, t|0) . The

EICKB(r’t) = Lag(N Cagll )+ KiCage(r, 0,1 =K C(r 1), physical meaning of this Green’s function is the probability
that the reactive groups of the chains A and B reencounter at
a timet, given that they were in contact with each other at

t = 0. Hence we can write

(71)

'O%CABB(rvr':t) = [Lag(r) + Lag(r')]Cags(r, r', 1)
+ O(r) [ KCpgg(r, 1", t) + K C5 (1", )] G(0,1]0) = [drGan(r. t|0)Gey(r, t|0) , (78)

+ O(r)[=KiCags(r, 1, 1) + K Ca(r, 1)] where G,(r, t|0) is the probability density that thih
—KiCpgpa(r: 7', 0, 1) + K. Cioo(r,r', 1) . (72)  bead of the chain A will be atgiven that it was at the origin
att=0. Gg,(r, t|0) has the similar meaning.

Equation (72) forC,gg(r.r',t) is further coupled with  We can calculate the propagator for the b&ag,(r, t|0) ,
higher-order RDFE yggg(r, 1, 0,1)  an@; . (r,r’,t) .In based on the ORZ model depicted in Figure 2. The
fact, we have an infinite hierarchy of evolution equations. propagator has the Gaussian form

In Ref. 33, we developed a very accurate and systematic 1 i
procedure to deal with the hierarchical set of reaction- Gan(r,t0) = 3/Zexp{—z }
diffusion equations. The many-particle kernel (MPK) theory [21am(1)] Pant)
of Ref. 33 gives the following Laplace-transform expression
for the time-dependence of the reactant number densities:

(79)

@ar(1) is the mean square displacement given by

&(ﬂ = &(ﬂ = %4_ ALD_]. (73) (pAm(t) = |:IrAm(t)_rAm(O)]ZD

Aa(0)  Ac(0) F(s)H v (Q 5)2
wherea(t) =a(t) —a(e) andAc(t) =c(t) —c(e) . Ifthe = 6Dt + Zbi q —-A?L”—k[l—exp(—t/rik)] (80)
reaction is not retarded by slow diffusioR(s) becomes k=1 Hak

unity and the system relaxes exponentially with the

. . Here,D,; is the center-of-friction diffusion coefficient of
relaxation rate constaitgiven by

A and rik is the relaxation time for th#éh normal mode of

A= kCg+ K1 (74)  the ORZ chain A. These are given by
Cg is the constant number density of B; note that we have _ .S
been considering the pseudo-first-order case in which B Dar = [VaoDar/ (Na+ DT, (81)
molecules are present in exceds. aqd are the . b2
equilibrium rate constants given by Tak = "5 A (82)
‘?’AAkDAl

ki® = kigag and k=« , (75)
whereDa; is the diffusion constant of a single bead of A.

wheregag(r) is the equilibrium pair correlation function for . i ?
the reactive groups of the chains A and B. The reactan?ther parameters n Egs. (80)-(82) vv_ere“d?flned_by E_q. (60)
except that they include a subscript “A” designating a

number densities at equilibriura(e)  aogko) are given by . X

K*9a(0)+c(0))/A and KX9Cq[a(0)+c(0))/A , respectively. q‘jﬁgg%r‘:oréhe éhgi'?ng £4. (78), we obtain
The effect of slow diffusion of reactant molecules on the 9 Ea. 9 '
relaxation kinetics is counted by the key dynamic function

3/2 -3/2

E(s): G(0,1/0) = (3/2)% X[ gan(t) + Gan(t)] (83)
A K K°C r )‘Qr(q G) where the mean square displacemggn(t) ohtindead
F(s) = 1+ijG(0,S|0) + 2 -1 of the ORZ chain B is given by a similar formulagag,(t)

A Ll—Svr(SICé) given in Eq. (80).
_ w When we neglect the hydrodynamic interactions among
Y"(t|CB) = exp[—CB‘rOdrkf (0], (76) the beads as well as the chain stiffness (that is, for a Rouse
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chain), the expression fag,(t)  given in Eq. (80) reducesexcitation mobility, dynamics of the polymer, which depends

to on the chain molecular weight, as well as of the quenchers
D influences the quenching rate, while otherwise the quenching
(D) = GEN-% rate converges to the results in the fast-moving excitation limit.
A
9 1 Conclusion
bf\ N, cos[%w EB(W(NA-'- 1)}

In this short review, we have shown that how the complicated
dynamics of reactions involving polymers can be disentangled.
L In a situation where the excluded-volume effects can be

L 12Sif [K7/2(Np + 1)] D gtd neglected and the reaction is not too long-ranged, the reaction
x| 1—exp3 > O . (84) ) .

[ 0 b2 } events and the polymer dy_ngmms can pe approximately

decoupled. Hence the sophisticated theories developed for

For a very long chaifN, — ) , Eq. (84) further reducesdiffusion-influenced reactions involving simple molecules
to the expression given in the textbook of Doi and Edw#rds. can be easily adopted to treat the polymer reaction dynamics.

Interchain Reaction Kinetics. We have set up the Then, the key dynamic quantity that should be supplemented
theoretical apparatus that can be used to analyze the timis-the Green’s function which describes the dynamics of the
dependent kinetics of interchain reactions. One can nowelative motion of the reacting groups. We have presented more
investigate the effects of various physical factors, such as thgeneral expressions for the Green’s functions of nonreactive
chain length, chain stiffness, and hydrodynamic interactiongpolymer dynamics, which take into account the effects of
within a unified theoretical framework. Some of the resultschain lengths, chain-stiffness, and hydrodynamic interactions.
have been presented in Refs. 31 and 32. Generalizations of the theory to include the excluded volume

In Ref. 31 we demonstrated how polymeric reactants affedhteractions as well as the more realistic model of the
reversible energy transfer reactions in a number of situationgolymers are under progress.
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