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We present a brief account of the theory of diffusion-influenced kinetics of reactions involving polymers. The
review will be based on the recent contributions from the authors. Both intrapolymer and interpolymer
reactions are considered, and the effects of various physical factors, such as the chain length, chain stiffness,
and hydrodynamic interactions, are described within a unified theoretical framework.
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Introduction

Chemical reactions between functional groups on polymeric
molecules are ubiquitous in many applications. Termination
in radical polymerization, crosslinking of polymer gels, and
reactions involving biopolymers such as proteins and receptors
are a few examples.1,2 In spite of their practical importance,
understanding of the principles behind their reaction kinetics
is still in a primitive stage. This is due to the difficulty arising
from the strong constraint of chain connectivity as well as of
chain entanglements, leading to a deviation of the dynamics
of reactive groups from the free Brownian motion. It is in
contrast to the reaction kinetics of small molecules, which
have been studied extensively for many years.3,4

Much attention has been paid to the intrachain reactions of
polymers because such reactions occur in a variety of reacting
polymer systems and measurements of the intrachain reaction
rates provide valuable information on the conformational
structure and dynamical behavior of polymer chains.5,6 A
general theory for describing the diffusion-influenced kinetics
of intrachain reactions was first advanced by Wilemski and
Fixman.7 By utilizing a factorization approximation (also
called the closure approximation), they could derive analytic
expressions for the reaction rate and the time-dependent
survival probability of unreacted polymer for several types
of intrachain reactions. More specific aspects of the
intrachain reactions have been investigated also. Friedman
and O’Shaughnessy developed a renormalization group
method for calculating the cyclization rates of chain polymers
as a function of reactive group locations along the backbone.8

Stampe and Sokolov investigated the effects of electrostatic
interaction between the charged end groups on the cyclization
rate.9 Dua and Cherayil considered the effect of backbone
rigidity on the dynamics of chain closure.10 Bandyopadhyay
and Ghosh utilized a non-Markovian reaction-diffusion
equation to investigate the memory effect in the fluorescence
resonance energy transfer.11 Rey and Freire,12 and more
recently Podtelezhnikov and Vologodskii13 investigated the
effect of excluded volume interactions by using Brownian

dynamics simulations.
Investigations on reactions between polymers have also

been made for a number of situations. de Gennes discovered
a regime of time-dependent reaction rates with and without
the effects of entanglements.14 Oshanin and his coworkers
have made investigations on trapping reactions involving
polymers in two and three dimensions,15 and summarized
the many-particle effects occurring in various polymeric
reactions.16 Reactions at polymeric interfaces were studied
extensively by O’Shaughnessy et al.17 and by Fredrickson.18 

In this review, we present a brief account of the theory of
diffusion-influenced kinetics of reactions involving polymers,
based on the recent contributions from the authors. In
particular, we show that for both intrachain and interchain
reactions, the reaction event and the inherent polymer dynamics
can be decoupled approximately in many cases. The effects
of various physical factors, such as the chain length, chain
stiffness, and hydrodynamic interactions, on the reaction
kinetics can thus be described within a unified theoretical
framework. 

Intrachain Reactions

Figure 1 illustrates schematically a typical intrachain
reaction. For simplicity, the polymer is modeled as a chain of
spherical beads connected by harmonic springs. As shown in
the figure, we consider the general case in which the reacting
groups are located at any position on the chain. Most previous
theories dealt with the case where the reaction occurs
between the reacting groups at the chain ends. Although we
will use the terms tailored for a simple cyclization reaction,
the theory can also be applicable to intrachain energy transfer19

and the excimer-formation reaction20 with a little modification.
Derivation of the Rate Expressions. Let  be

the probability density for the polymer being in the open
form, with the N + 1 beads constituting the chain located at

. Similarly,  is the probability
density for the polymer making a ring due to the bond
formation between the ith and jth beads, with the N + 1

ψo rN 1+ t,( )

rN 1+ r0 r1 … rN, , ,( )≡ ψR xN 1+ t,( )
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beads located at . The probability
density function  evolves in time according to7

(1)

Here  is the Smoluchowki operator governing the
thermal evolution of the open-chain distribution in the
absence of reaction. The sink functions Rf and Rr represent
the inherent rates of bond formation and dissociation at the
bead configurations given by rN + 1 and xN + 1, respectively.
We assume that they have the simple forms given by

(2)

where . Equation (2)
tells us that the inherent bond formation and dissociation
occur so rapidly that the polymer conformation does not
change much during the course of the reactive transitions.
With Eq. (2), Eq. (1) reduces to

(3)

We now assume the following sink functions:

(4)

(5)

With these sink functions, integration of Eq. (1) over (r0,
..., r i-1, r i+1, ..., r j-1, r j+1, ..., rN) gives

   (6)

 is the probability density for the
polymer being in the open [ring] form at time t with the
ith and jth beads at r i and r j.  is the reduced
Smoluchowski operator governing the thermal evolution of

 in the absence of a reaction. When the external

flows and forces are absent, it is clear that  and
 depend only on :

 ,

(7)

PO(R, t)[PR(R, t)] is the probability density for the polymer
being in the open [ring] form at time t with the distance
between the ith and jth beads being given by R. Hence, Eq.
(6) reduces to

(8)

Here, L(R) is an effective thermal operator governing the
reaction-free evolution of PO(R, t), whose explicit expression
need not be known at the moment. 

If the vibration of the ring-forming bond is very fast, the
deviation of PR(R, t) from the internal equilibrium distribution

 should be negligible, so that we can write

(9)

SR(t) is the probability that the polymer is in the ring form at
time t. With this approximation, Eq. (8) can be rewritten as

(10)

Integrating Eq. (10) over R (i.e., over the relative separation
and orientation of the ith and jth beads), we obtain the rate
equation as

(11)

Here  is the probability that the polymer is
in the open form at time t, and  denotes the equilibrium
rate constant for the bond-dissociation:

(12)

(13)

We assume that initially the polymer is in the equilibrium
configuration of the open chain:

(14)

For this initial condition, Laplace transformation of Eq. (10)
yields the following perturbative solution:

 

xN 1+ x0 x1 … xN, , ,( )≡
ψO rN 1+ t,( )

∂
∂t
----ψO rN 1+ t,( ) L rN 1+( )ψO rN 1+ t,( )=

dxN 1+ Rf rN 1+ xN 1+( )ψO rN 1+ t,( )∫–

dxN 1+ Rr xN 1+ rN 1+( )ψR xN 1+ t,( ) .∫+

L r N 1+( )

Rf r N 1+ xN 1+( ) Sf
0 r N 1+( )δ r N 1+ xN 1+–( ),=

Rr xN 1+ r N 1+( ) Sr
0 xN 1+( )δ r N 1+ xN 1+–( ),=

δ r N 1+ xN 1+–( ) δ r 0 x0–( )…δ r N xN–( )=

∂
∂t
----ψO r N 1+ t,( ) L r N 1+( )ψO r N 1+ t,( )=

Sf
0 r N 1+( )ψO r N 1+ t,( ) Sr

0 r N 1+( )ψR r N 1+ t,( ) .+–

Sf
0 r N 1+( ) κfSf r i r j–( ) ,=

Sr
0 r N 1+( ) κrSr r i r j–( ) .=

∂
∂t
----PO

′ r i r j t, ,( ) L′ r i r j,( )PO′ r i r j t, ,( )=

κfSf r i r j–( ) PO′ r i r j t, ,( )– κrSr r i r j–( )PR′ r i r j t, ,( ) .+

PO′ r i r j t, ,( ) PR
′ r i r j t, ,( )[ ]

L′ r i r j,( )

PO′ r i r j t, ,( )

PO′ r i r j t, ,( )
PR′ r i r j t, ,( ) R r i r j–≡( )

PO′ r i r j t, ,( ) V 1– PO R t,( )=

PR′ r i r j t, ,( ) V 1– PR R t,( ) .=

∂
∂t
----PO R t,( ) L R( )PO R t,( )=

κfSf R( )PO R t,( ) κrSr R( )PR R t,( ) .+–

PR
eq R( )

PR R t,( ) PR
eq R( )SR t( ) .≅

∂
∂t
----PO R t,( ) L R( )PO R t,( )=

κfSf R( )PO R t,( )– κrSr R( )PR
eq R( )SR t( ) .+

d
dt
----SO t( ) κf dRSf R( )PO R t,( ) kr

eq 1 SO t( )–[ ] .+∫–=

SO t( ) 1 SR t( )–=[ ]
kr

eq

SO t( ) dRPO R t,( ) ,∫=

kr
eq κr dRSr R( )PR

eq
R( ) .∫=

SO t 0=( ) 1, PO R t, 0=( ) PO
eq

R( ) .==

dRSf R( )P̂O R s,( )∫ s
1– dRSf R( )PO

e
R( )∫=

κfs
1– dRSf R( ) dR0Ĝ R s R0,( )Sf R0( )PO

eq
R0( )∫∫





–

Figure 1. Pictorial representation of the reversible cyclization
reaction. The bond forms between the ith and the jth monomers.
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× 

× (15)

We denote the Laplace transform of any function f(t) as
. In Eq. (15), the Green’s function  is defined

by

. (16)

By using the decoupling approximation suggested by
Weiss,21 we can resum the series solution in Eq. (15) as

(17)

where

(18)

(19)

(20)

On the other hand, Laplace transformation of Eq. (11)
gives

. (21)

Substitution of Eq. (17) into Eq. (21) finally gives

.

(22)
where

(23)

Note that  and 
Equation (22) is the key result of the formalism developed

in this section. This can be compared with the WF result:7

    (24)

with

At long times, when the equilibrium state is restored, we
should have

(25)

However, neither of the solutions given by Eqs. (22) and (24)
satisfies this requirement in general. We can remedy this
problem immediately. When the system is restored to the
equilibrium state, we should have  and
Eq. (10) reduces to

(26)

With this detailed balance condition, Eq. (22) becomes

(27)

One can immediately see that Eq. (27) satisfies the equilibrium
condition given by Eq. (25). 

In contrast, the WF solution cannot be saved by the above
detailed balance condition. The reason is that in the WF
theory a couple of approximations were made at the stage of
Eq. (3). First,  was set equal to a constant kr.
Second,  was approximated by 
where  is the equilibrium chain distribution
function for the ring polymer. Thus, one can easily see that
the WF solution is regained from our solution if Sr(R) is set
equal to unity.

When the sink functions can be modeled as δ-functions [i.e.,
when ], Eq. (27) reduces to

(28)

It should be remarked that the decoupling approximation of
Weiss becomes exact in this δ-function sink case.

The Green’s Function. To calculate the intrachain reaction
rate between two reactive groups on a polymer, we need an
explicit Green’s function expression for the relative motion
of the beads carrying the groups in the absence of reaction. 

To the best of our knowledge, only the Green’s function
for the end-to-end motion of a polymeric chain has been
given in the literature. For the free draining Rouse chain, the
following expression has been derived by Wilemski and
Fixman7 using the boson representation method and also by
Doi22 using the more straightforward integration procedure:

(29)

Here, R is the end-to-end vector r0 − rN, and L2(=Nb2) is the

κf dRSf R( ) dR1Ĝ R s R1,( )Sf R1( )∫∫–

dR0Ĝ R1 s R0,( )Sf R0( )PO
eq R0( ) …+∫





κr ŜR s( ) dRSf R( )∫




dR0Ĝ R s R0,( )Sr R0( )PO
eq R0( )∫+

κf dRSf R( ) dR1Ĝ R s R1,( )Sf R1( )∫∫–

dR0Ĝ R1 s R0,( )Sr R0( )PR
eq R0( ) …+∫





.

f̂ s( ) Ĝ R s R0,( )

Ĝ R s R0,( ) 1
s L R( )–
--------------------

δ R R0–( )

4πR0
2

-----------------------=

dRSf R( )P̂O R s,( )∫
Vf

s
-----

κf

s
----–

D̂f s( )
1 κfD̂f s( ) Vf⁄+
-------------------------------------⋅≅

κr ŜR s( )
D̂r s( )

1 κfD̂f s( ) Vf⁄+
-------------------------------------,+

Vf dRSf R( )PO
eq R( ),∫=

Df t( ) dRSf R( ) dR0G R t R0,( )Sf R0( )PO
eq R0( )∫ ,∫=

Dr t( ) dRSf R( ) dR0G R t R0,( )Sr R0( )PR
eq R0( )∫ .∫=

κf dRSf R( )P̂O R s,( ) kr
eq s 1– ŜO s( )–[ ]– 1 sŜO s( )–=∫

ŜR s( ) s
1– ŜO s( )–=

kf
eq

s
------ s kf

eqsD̂f s( )
Df ∞( )
--------------- kr

eq
kf

eq
kr

eq D̂f s( )
Df ∞( )
--------------

D̂r s( )
Dr ∞( )
--------------–+ + +

 
 
 

1–

=

kf
eq κf dRSf R( )PO

eq
R( ) κfVf=∫= .

Df ∞( ) Vf
2

= Dr ∞( ) Vf dRSr R( )PR
eq

R( ).∫=

ŜR
WF

s( )
kf

eq

s
------- s kf

eqsD̂f s( )
Df ∞( )
--------------- kr

eq
+ +





=

kf
eq

+ kr
eq D̂f s( )

Df ∞( )
--------------- Vf

1– R̂ s( )–




1–

R t( ) dRSf R( ) dR0G R t R0,( )PR
eq R0( ).∫∫=

SR t( )
t ∞→
lim sŜR s( )

s 0→
lim

kf
eq

kf
eq kr

eq
+

------------------= = SR
eq .≡

PO R t,( ) PO
eq R( )SO

eq
=

κfSf R( )PO
eq R( )SO

eq κrSr R( )PR
eq R( )SR

eq .=

ŜR s( )
kf

eq

s
------- s kf

eqsD̂f s( )
Df ∞( )
--------------- kr

eq
+ +





1–

.




=

Sr
0 r N 1+( )

ψR r N 1+ t,( ) ψR
eq r N 1+( )SR t( )

ψR
eq r N 1+( )

Sf R( ) S= r R( ) δ R σ–( ) 4πσ2( )⁄=

ŜR s( ) 1
s
---

kf
eq

s κfsĜ σ s σ,( ) kr
eq

+ +
------------------------------------------------------ .⋅=

G R t R0,( ) 3

2πL2 1 φ2 t( )–[ ]
----------------------------------- 

 3/2
exp

3

2L
2

--------–
R φ t( )R0–[ ]2

1 φ2 t( )–[ ]
-------------------------------

 
 
 

.=
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equilibrium mean squared end-to-end distance with b2

denoting the equilibrium mean squared length of a single
bond of the Rouse chain. φ(t) is given by 

(30)

where t1 is the characteristic diffusion time scale defined by
, and D1 is the diffusion constant of a single

bead. The expression for φ(t) given in Eq. (30) is valid only
for large N. A more accurate expression for φ(t) is20,23

(31)

where  is the Rouse eigenvalue given by

(32)

Note that in Eqs. (30) and (31) summation includes only the
odd values of k. 

In Ref. 20, we derived a more general expression for
 with  . We also

took into account the dynamic effects of hydrodynamic
interactions among the beads. The analysis was based on the
Rouse-Zimm model of a linear chain.24 In this model, the
potential energy of the chain is given by

(33)

where A is the  matrix given by 

(34)

and Xγ is the (N + 1)-dimensional vector defined by

(35)

with the superscript T denoting the transpose. 
In the absence of reaction, the probability density function

 for the N + 1 beads being located  (r0, r1,
..., rN) at at time t evolves as

 . 

(36)

H is the matrix describing the pre-averaged hydrodynamic
interaction between the beads that is given by

(37)

where  denotes the friction coefficient for a
single bead, and η is the solvent viscosity.

Let Q denote a matrix whose N + 1 columns are the
eigenvectors of the matrix H ·A, so that H ·A is diagonalized
by the similarity transformation:

(38)

Zimm showed that the same matrix Q can also be used to
diagonalize H and A separately, though not by similarity
transformations:24

(39)

Hence by introducing the normal coordinates {qk = (qkx, qky,
qkz)}  defined by

(40)

Eq. (36) can be rewritten as

(41)

where  and . Except
for q0 which corresponds to the center-of-mass motion, the
normal modes are over-damped harmonic oscillators with
force constants 2αikBT and diffusion constants D1νi.

From Eq. (40), we have

(42)

with . Note that c0 = 0 since R should be
independent of the center-of-mass coordinates. Hence the
Green’s function  can be expressed as

×  . (43)

Here,  is the full Green’s function for Eq.
(41) satisfying the initial condition, 

= .  is the equilibrium distribution

function,  and N is the normalization constant.

φ t( ) 8

π2
-----

1

k2
----exp 3λk

ot t1⁄–( ) λk
o kπ

N
------ 

  2

=,
odd k

∑=

k 0 1 … N, , ,=( ),

t1 b2 D1⁄≡

φ t( ) 8
N N 1+( )
---------------------

odd k

∑
1

λk
R

----- 1
4
---– 

 exp 3λk
R

– t1⁄( ) ,=

λk
R k 0 1 … N, , ,=( )

λk
R 4sin2 kπ

2 N 1+( )
---------------------- 

  .=

G R t R0,( ) R r i r j–= 0 i j N≤ ≤ ≤( )

U kBT⁄ 3

2b2
--------

i 1=

N

∑ r i r i 1––( )2 3

2b2
-------- Xγ

T

γ x y z, ,=
∑ A Xγ ,⋅ ⋅= =

N 1+( ) N 1+( )×

A

1 1– 0 0 … 0 0 0

1– 2 1– 0 … 0 0 0

0 1– 2 1– … 0 0 0

0 0 1– 2– … 0 0 0

0 0 0 0 … 2 1– 0

0 0 0 0 … 1– 2 1–
0 0 0 0 … 0 1– 1

=

Î Î Î Î

Î Î Î

Î

Xx

x0

x1

xN
 
 
 
 
 
 

Xy

y0

y1

yN 
 
 
 
 
 

Xz

z0

z1

zN 
 
 
 
 
 

===

Î Î

Î

ψ r N 1+ t,( ) r N 1+ ≡

∂ψ
∂t
------- D1

∂
∂Xγ
-------- 

 T
H ∂ψ

∂Xγ
-------- 

 ⋅ ⋅ 3

b
2

----- ∂
∂Xγ
-------- 

 T
H A Xγψ⋅ ⋅ ⋅+

γ x y z, ,=

∑=

Hij

1   i j=( )
ζ1

ηb 6π3 i j–
1 2⁄( )

----------------------------------------  i j≠( )






=

ζ1 kBT D1⁄=

Q 1– H A Q⋅ ⋅ ⋅ ΛΛ with Λi j λiδi j .==

QT A Q⋅ ⋅ M with Mij µiδi j ,==

Q 1– H Q 1T–⋅ ⋅ ΛΛ M 1–⋅ N  with  Nij νiδij λi µi⁄( )δij .= == =

r i
Qij qk ,

k 0=

N

∑=

∂
∂t
----ψ qN 1+ t,( ) D1

i 0=

N

∑ νi
∂2ψ
∂qi

2
--------- 2αi

∂
∂qi

------- 
 T

qiψ⋅+ ,=

αi 3µi( ) 2b2( )⁄= qN 1+ q0 q1 … qN, , ,( )=

R r i r j– ckqk
k 0=

N

∑= =

ck Qik Qjk–=

G R t R0,( )

G R t R0,( ) N dqN 1+ dq0
N 1+ δ ciqi R–

i 1=

N

∑
 
 
 

∫∫=

GF qN 1+ t q0
N 1+,( )δ cjqj0

j 1=

N

∑ R0–
 
 
 

ψeq q0
N 1+( )

GF qN 1+ t q0
N 1+,( )

GF qN 1+ t 0= q0
N 1+,( )

i 0=

N

∏ δ qi qi 0–( ) ψeq qN 1+( )
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First,  can be obtained easily by solving

(44)

We have

(45)

where V is the volume of the system. The normalization
constant N appearing in Eq. (43) is obtained by requiring
that . For t = 0, this requirement on Eq.
(43) gives

(46)

With the expression for  in Eq. (45), we have

(47)

Next, Eq. (42) shows that R is a Gaussian random variable.
Hence the reduced Green’s function (RGF) 
should be a Gaussian function with respect to both R and R0:

(48)

where N is a normalization constant, and Hi (i = 1, 2, 3) is a
time-dependent matrix. For an isotropic system,

 depends on the magnitudes of R and R0 and on
the relative angle between R and R0, but is independent of
the respective orientations of R0 and R in the laboratory
fixed frame. Hence, Hi  must be proportional to unit matrix, i.e.

.
In addition, the RGF satisfies the following properties:

(49)

(50)

where  is the equilibrium distribution. From Eq.
(49), we can show that N = (h1/2π)3/2 and , so that
Eq. (48) becomes 

(51)

At long times, we must have  and
= 0, since  and <R2> =

. 
From Eq. (50), we can obtain  with

φ = −h2/h1, and Eq. (51) becomes

(52)

We can relate φ to <R(t) ·R(0)> by

(53)

Finally, after some algebra, we can show that the
equilibrium mean squared distance between the ith and jth
beads, , and the normalized time correlation function
of the vector R, φ(t), are given by

(54)

(55)

where t1 = b2/D1. The equilibrium distribution function for
the distance R is given by

(56)

An expression for the orientation-averaged Green’s function
can be readily obtained from Eq. (52):

(57)

For the free-draining Rouse chain, more explicit expressions
can be obtained. In this case, we have for 

(58)

with the superscript R denoting a quantity for the free-
draining Rouse chain. In particular, when the reaction occurs
between the beads at the chain ends (i.e. i = 0, and j = N), we
have , and the expression for 
reduces to that given by Eqs. (29) and (31).

Effect of Chain Stiffness. The effect of chain stiffness can
be incorporated into the present theoretical framework by
adopting the optimized Rouse-Zimm (ORZ) model.25 The
ORZ model differs from the Rouse-Zimm model in that the
bond angles are fixed; see Figure 2. The chain stiffness does
not affect the inherent reaction step, so that its influence is

ψeq qN 1+( )

i 0=

N

∑ νi

∂2ψeq

∂qi
2

-------------- 2αi
∂

∂qi

-------- 
  T

+ qiψeq⋅ 0 .=

ψeq qN 1+( ) V 1–

i 1=

N

∏ αi π⁄( )3 2⁄ exp αiqi
2

–( ),=

dRG R t R0,( ) 1=∫

N dqN 1+ δ
i 1=

N

∑ ciqi R0–
 
 
 

ψeq qN 1+( )∫ 1 .=

ψeq qN 1+( )

N 1– π ci
2 αi⁄

i 1=

N

∑
 
 
  3 2⁄–

exp R0
2  –  ci

2 αi⁄
i 1=

N

∑
 
 
 

R0
eq R0( ) .==

G R t R0,( )

G R t R0,( ) N exp
1
2
--- R[ H1 R⋅ ⋅–





=

+ 2R H2 R0⋅ ⋅ R0+ H3 R0 ]⋅ ⋅




.

G R t R0,( )

Hi hi t( )I=
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reflected only in the nonreactive chain dynamics. 
The evolution equation governing the random thermal

motion of the chain is again given by the Smoluhowski
equation as given by Eq. (36), but with the A and H matrices
replaced by

(59)

where q = −cosθ with θ denoting the bond angle (see Fig. 2),
and we have put the subscript “S” to the matrices to
designate the quantities for the “stiff” chain. 

The procedure to get the Green’s function expression
follows the same line as in the previous subsection. Let us
introduce the following notations:

with 

(60)

Then the expressions for the Green’s functions given by
Eqs. (52) and (57) remain the same, but with the expressions
for  and φ(t) given by

(61)

(62)

Intrachain Reaction Kinetics. We have set up the
theoretical apparatus that can be used to analyze the time-
dependent kinetics of intrachain reactions. One can now
investigate the effects of various physical factors, such as the
chain length, chain stiffness, and hydrodynamic interactions,
within a unified theoretical framework. Some of the results
have been presented in Refs. 19 and 20. 

A useful experimental technique for probing the dynamical
properties of a flexible chain polymer is to measure the time-
dependent intensity of fluorescence emitted from a fluorophore
attached at one end of the chain, which is sensitized by an
external illumination and quenched by an energy acceptor
located at the other end.26 Time-resolved fluorescence data
are most commonly obtained by exciting the reaction system
with a short pulse of light and thereafter measuring the time-
dependent fluorescence emission.27 However, the excitation
light pulse has a finite time span so that an extensive
deconvolution of the data needs to be carried out. Even if one
uses a picosecond laser, the observed instrument response
function often spans over 0.1 ns. Hence it can be rather difficult
to obtain adequate resolution. An alternative method is to
measure the frequency response of the emission to intensity-
modulated light. This method, called the frequency-domain
fluorometry, is known to have high sensitivity to resolve
the complex decay of fluorescence intensity. It was first
implemented by Gratton and Limkeman,28 and has been widely
applied by Lakowicz and Gryczynski.29 In particular, Lakowicz
et al. used the method to investigate the intramolecular energy
transfer reactions occurring in flexible molecules.30

In Ref. 19, we presented a theory for analyzing the
frequency-domain fluorometric experiments on intrachain
fluorescence-quenching reactions occurring in flexible chain
polymers. The results were applied to investigate the qualitative
dependence of the modulation and the phase angle on the
chain length of the polymer.

In Ref. 20, we formulated a general theory for analyzing
the kinetics of intrachain excimer-formation reactions. While
most previous theories for intrachain reactions dealt with the
end-to-end reaction case, we considered the general situation
in which the reacting groups are located at any position on
the chain backbone. Various aspects of the reaction kinetics,
such as the effect of hydrodynamic interaction and the
dependence of reaction rate on the positions of reacting groups
as well as on the chain length, were investigated.
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Figure 2. The optimized Rouse-Zimm model of a linear chain. The
bond angles are fixed at a constant value θ.
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Interchain Reactions

In this section we will consider a typical interpolymer
reaction, as illustrated schematically in Figure 3. Theories
for other types of interpolymer reactions can be formulated
in a similar way.31,32 Again, we model the polymer as a chain
of beads connected by harmonic springs. We consider two
different kinds of linear polymers, A and B, with (NA + 1)
and (NB + 1) beads, respectively. We assume that the chain A
has a single reactive group at the mth bead, while the chain B
at the nth bead.

Derivation of the Rate Expressions. We consider a
reaction system containing 1A chains of the type A and 1B

chains of the type B. To describe the reaction kinetics
systematically, we introduce a set of hierarchical kinetic
equations describing the reaction-diffusion process of the
chains. The lowest-order equation in the hierarchy is given by

(63)

 is the probability density for the ith chain of
A being in the unreacted form at time t, with the NA+ 1
beads constituting the chain located at (rA0, rA1, ...,
rANA).  is the joint probability density
that both the ith chain of A and the jth chain of B are in the
unreacted form at time t, with the beads constituting the
chains located at (rA0, rA1, ..., rANA) and (rB0,
rB1, ..., rBNB). Similarly,  is the probability
density for these chains, Ai and Bj, making a bond between
the mth bead of Ai and nth bead of Bj, with beads located at

. The first term on the right side of Eq. (63)
represents the change due to random thermal motion of the
chain Ai. The second term represents the change due to the
bond formation between the chains Ai and Bj, while the third
term represents the change due to the reverse dissociation.
The sink functions  and 
denote the respective reactive transition rates at the con-
figuration .

We then neglect the excluded volume interactions between

the beads, so that the sink functions are assumed to have the
following forms:

(64)

(65)

Since we cannot keep track of the fate of individual chains,
we introduce the reduced distribution functions (RDF):

(66)

(67)

(68)

where  denotes the integration over the bead coordinates
of A except rAm, and  is defined similarly. In a
homogeneous and isotropic reaction system, the number
density field of A, , is independent of rAm and can
be equated with the bulk number density a(t), and the two-
particle RDF depends only the separation of the reactive
beads, namely, .

With Eqs. (64)-(67), integrating Eq. (63) over the
irrelevant coordinates and then summing the resultant
equation over i from 1 to 1A gives

(69)

In writing Eq. (69) we identified 
with the bulk number density of the product polymers, c(t),
since rBn = rAm in all C molecules (as assumed in writing the
sink functions) and  is independent of
rAm in a homogeneous system.

The kinetic equation for CAB(r, t) can be obtained by
integrating the evolution equation for 
over the irrelevant bead coordinates and then summing the
resultant equation over the reactant molecule indices i and j.
In the pseudo-first order case, where one species of chains
(say B) are present in excess over the other, we obtain33

(70)

where LAB(r) denotes an effective thermal evolution operator
for the RDF CAB(r, t) in the absence of reaction, whose
explicit expression need not be known at the moment. The
second term on the right side takes account of the changes in
CAB(r, t) due to binary reaction events. When the reactant
number densities are small, only the binary reaction events
are important and it is less probable that two or more reactant
molecules of one species compete for a target reactant
molecule of the other species. The third and the fourth terms
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Figure 3. Pictorial representation of an interpolymer reaction. The
bond forms between the mth monomer of polymer A and the nth
monomer of polymer B.
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arise from the competitive participation of a third chain of B
in the binary reaction event. The three-particle RDF CABB(r,
r', t) is the product of a(t) and the number densities of chains
of B, whose reactive groups are separated by r and r' from
that of an A chain, and  is the two-particle RDF for
A-B chain pairs with A denoting an A captured by a third
chain of B.

Eq. (70) for  CAB(r, t) is coupled with those for  CABB(r, r',
t) and . The evolution equations for these RDFs
are in turn given by

(71)

(72)

Equation (72) for  is further coupled with
higher-order RDFs  and . In
fact, we have an infinite hierarchy of evolution equations.

In Ref. 33, we developed a very accurate and systematic
procedure to deal with the hierarchical set of reaction-
diffusion equations. The many-particle kernel (MPK) theory
of Ref. 33 gives the following Laplace-transform expression
for the time-dependence of the reactant number densities:

(73)

where  and . If the
reaction is not retarded by slow diffusion,  becomes
unity and the system relaxes exponentially with the
relaxation rate constant λ given by

(74)

CB is the constant number density of B; note that we have
been considering the pseudo-first-order case in which B
molecules are present in excess.  and  are the
equilibrium rate constants given by

(75)

where gAB(r) is the equilibrium pair correlation function for
the reactive groups of the chains A and B. The reactant
number densities at equilibrium,  and  are given by

 and , respectively.
The effect of slow diffusion of reactant molecules on the
relaxation kinetics is counted by the key dynamic function

: 

 (76)

where  and  is the rate coefficient
for the irreversible reaction. In the Laplace domain it can be
expressed as

 (77)

We can now calculate the time-dependence of reactant
number densities once the Green’s function expression is
given.

The Greens Function. In this subsection we will derive
an expression for the Green’s function . The
physical meaning of this Green’s function is the probability
that the reactive groups of the chains A and B reencounter at
a time t, given that they were in contact with each other at
t = 0. Hence we can write

(78)

where  is the probability density that the mth
bead of the chain A will be at r, given that it was at the origin
at t = 0.  has the similar meaning.

We can calculate the propagator for the bead, ,
based on the ORZ model depicted in Figure 2. The
propagator has the Gaussian form

(79)

 is the mean square displacement given by

(80)

Here,  is the center-of-friction diffusion coefficient of
A and  is the relaxation time for the kth normal mode of
the ORZ chain A. These are given by

(81)

(82)

where DA1 is the diffusion constant of a single bead of A.
Other parameters in Eqs. (80)-(82) were defined by Eq. (60)
except that they include a subscript “A” designating a
quantity for the chain A.

Inserting Eq. (79) into Eq. (78), we obtain

(83)

where the mean square displacement  of the nth bead
of the ORZ chain B is given by a similar formula as 
given in Eq. (80).

When we neglect the hydrodynamic interactions among
the beads as well as the chain stiffness (that is, for a Rouse
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chain), the expression for  given in Eq. (80) reduces
to

× (84)

For a very long chain , Eq. (84) further reduces
to the expression given in the textbook of Doi and Edwards.34

Interchain Reaction Kinetics. We have set up the
theoretical apparatus that can be used to analyze the time-
dependent kinetics of interchain reactions. One can now
investigate the effects of various physical factors, such as the
chain length, chain stiffness, and hydrodynamic interactions,
within a unified theoretical framework. Some of the results
have been presented in Refs. 31 and 32. 

In Ref. 31 we demonstrated how polymeric reactants affect
reversible energy transfer reactions in a number of situations.
Depending upon the reactivity as well as upon the Rouse
relaxation time of the shorter chain, the relaxation of the
excited polymeric reactants was found to be described by a
scaling function or by an exponential form. The Stern-Volmer
coefficient, which is important in fluorescence quenching
experiments, was found to exhibit dramatic changes as the
spontaneous decay rate varies; power-law dependencies on
the molecular weight of the polymeric quenchers and on the
spontaneous decay rate were predicted in separate regions,
which are completely different from the behavior observed
in the small molecular reactions.

In Ref. 32, we presented a theory for studying the reactions
of the irreversible quenching of an excitation migrating on a
fluctuating polymer. An expression for the survival probability
of an excitation was derived as a function of time for various
values of chain length and excitation mobility. As the mobility
increases, the quenching reaction rate is enhanced and this is
more pronounced for a longer chain. In the limit of infinitely
fast-moving excitation, the excitation is completely delocalized
immediately after the initial excitation, and the randomness
in the initial location produces no effect on the quenching. In
this case the “effective reaction radius” becomes a useful
concept, which turns out to be comparable to the radius of
gyration of the polymer. With this effective reaction radius and
the well-known Smoluchowski's rate expression, the quenching
reaction process can be viewed in a simple way. From such
observation, one can conclude that the fast migration of the
excitation significantly enhances the quenching rate by the
factor of the linear dimension of the chain molecule. For
more general situations with intermediate values of the
excitation mobility, the quenching reaction process is governed
by the interplay between excitation migration and dynamics
of the polymer. On time scales smaller than the inverse of the

excitation mobility, dynamics of the polymer, which depends
on the chain molecular weight, as well as of the quenchers
influences the quenching rate, while otherwise the quenching
rate converges to the results in the fast-moving excitation limit.

Conclusion

In this short review, we have shown that how the complicated
dynamics of reactions involving polymers can be disentangled.
In a situation where the excluded-volume effects can be
neglected and the reaction is not too long-ranged, the reaction
events and the polymer dynamics can be approximately
decoupled. Hence the sophisticated theories developed for
diffusion-influenced reactions involving simple molecules
can be easily adopted to treat the polymer reaction dynamics.
Then, the key dynamic quantity that should be supplemented
is the Green’s function which describes the dynamics of the
relative motion of the reacting groups. We have presented more
general expressions for the Green’s functions of nonreactive
polymer dynamics, which take into account the effects of
chain lengths, chain-stiffness, and hydrodynamic interactions.
Generalizations of the theory to include the excluded volume
interactions as well as the more realistic model of the
polymers are under progress.
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