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Valuable insight into the nonlinear dynamics of a system can be gleaned from its response to a single intense
short pulse. We derive expressions for the corresponding nonlinear response functions and show that the
fluctuation-dissipation theorem may be extended beyond the linear response limit to an arbitrary pulse
intensity. As an illustrative example, we calculate response functions up to 11th order for the regular Lorentz
gas in two dimensions.
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Introduction numerical problems; due to the fast, exponential growth of

stability matrix elements, averages depending on stability

The dynamics of condensed matter systems are oftematrices converge very slowly and nonlinear response func-

studied experimentally by perturbing the sample with antions can be calculated only for short times. The response to
external fieldE(t) (or a sequence of fields) and recording itsa single pulse of arbitrary magnitude, however, is an

relaxation back to equilibrium. From such a responsesxception. This response may be recast in the form of a
information about the microscopic dynamics of the systenrcombination of correlation functions and does not depend on
can be extracted. If we use the observabte monitor the the stability matrix. In that respect, we obtain a generali-
evolution of the system, the-th order response to an zation to arbitrary order of the fluctuation dissipation

arbitrary perturbation can be succinctly written as theorent® which ri Prously connects the observable linear
. ) . response functio )(t) with an equilibrium correlation
B(“)(t) = J’O dTnJ’O”drn_l---I02drlE(rn)E(rn_l)... function of the unperturbed system (see Eq. 12): Purely

- equilibrium simulations are enough, no additional information
E()E(T) x S"(t T g, T T), (1) s necessary for computing the response and the numerical
simulation is then straightforward.

where then-th order response functic®” (t,7,,Ty_y...., The n-th order response function to a single short pulse
T,,7;) depends on the dynamics of the system, on how thgcting on the system at tirhe 0 is

system couples to the external perturbation and also on the _
variableB selected to follow the system’s time evolution. For S(”)(t) = (_1)”I dxB( X)e"LOt{ A, --{Ap} -} ()
a system evolving classically according to Newton's equa-

tions of motion, the nonlinear response function can be&vhen we propagate the density matiix, when we operate

obtained from perturbation theory: in the “Schrodinger representation”. Alternatively we can
0 propagate the operatois., in the “Heisenberg representa-
s (6T Taog T20Ty) = tion”.>? The response function then assumes the form
—ilo(t—1,)
(-1)"[ dxB(¥e sV(t) = A, - {AB(H} }0 (4)
—iLo(Ty—Ty_1) —iLo(T,—1y) —i i
x{A e’ {- e "7 APt} . (2 Here, B()=Be “'=e "B .

The Poisson bracket on the right hand side of equation (3)
Here p, is the equilibrium phase space distribution of thecan be written as

system,A(X) is the phase space variable appearing in the N
field-matter couplingH’(x.t) = -E(t)A(x) and, is the {A -{Ap}-}=73 BJDJ-(“)p, (5)
classical Liouville operator of the unperturbed system. i=1

Calculation of nonlinear response functions for classical (n) .
many-body systems requires evaluation of stability matricedn€re the phase space functio are obtained by
describing the time evolution of small displacements in phasEePeated application of the Poisson bracket. The first few of
spacé:® Although such stability matrices can be obtainedh€se functions are
from molecular dynamics simulations, they cause severe

D" =-A, ()
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DY ={A{AA}}, DY = 3A{A A}, DY = A’
Here, A=L,A . Using Eq. (5) we can then recast Eq. (3) ir
the form

n
n) _ n j (n)
s"(t) = (-1 3 BBMD"0 ©)

The response functions to a single short perturbatiol
become especially simple and easy to interpret if the
observableA is one of the phase space variables. So, let u
assume thaf = x; and denote this variatpke x; and it

conjugate momenturp. Then, the single pulse response Figure 1. The Lorentz gas consists of a point particle moving

: . . . through an infinite periodic array of hard scatterers in two
function of ordem in the Heisenberg picture assumes thedimensions. When the particle collides with a scatterer it is

form reflected elasticallyj.e., its velocity component normal to the
B(t scatterer surface is inverted. Here we imagine that the moving
s = DM—)-D. (10) particle carries a unit charge and that the perturbation is a short
dp"(0) pulse of strengtk accelerating the particle iadirection.

The partial derivatives in the above equation can be easily
evaluated with the following recursion formula correspond- 519 t) = \*°c!®_ 45,°c? + 630/°C?® - 3150/ C}
ing to an integration by parts:

+ 4725°C2 —945/°C? (21)
JI'B(t JI'B(t
<pk(o)ap4”(5§ = Cf dpexp(~fp’/2m) pkfp“i (1) = et - 55/°CY + 990/C - 6930/CP
. +17325/C> - 10395/°C, (22)
_ J 2 kO B(t)
=—C[ dpﬁ—[exp(—Bp 12mpl=——=; _ n_mn ,
P oap where y=p/m and C, = [p (0)B(t)J . Higher order
. . response functions can be evaluated analogously. The first
_B pk+1(0)uﬁ —K pk—l(o)u_tl _ equation in the hierarchy, Eq. (12), is known as the
m ap"~1(0) ap" " (0) fluctuation dissipation theorefff.

(11) As an illustrative example, we have calculated the response
) o o of the Lorentz gdsto short pulses. This model, shown in
Here,C is a normalization constant. Repeated application ofjgure 1, consists of a point particle of masswith

this recursion formula yields nonlinear response functions tgnomentump moving in a plane through an infinite regular

arbitrary order: array of circular scatterers with radi# arranged on a
o 1 triangular lattice with lattice constaat When the particle
(t) =yCy, (12)  collides with a scatterer it is reflected elastically, i.e., its
<@ > 0 velocity component normal to the scatterer surface changes
(1) =y C —\Cy, (13) sign. Between collisions the particle moves on a straight line
<@ 3 3 > 1 with constant velocity. Due to the collisions of the particle
(t) =y C -3yC, (14)  with the convex (and therefore dispersing) surface of the
scatterer the dynamics is strongly chaotic.
4\ AA 32 20
s = y'ci -6y°Cy + 3/, (15) Throughout, we study a system in which the scatterer
density isp = 4/50, , wherg, is the close packed density
5) /.y _ .55 4.3 3.1 0 ()
s(t) = y’C; - 10y°C; + 15/°Cy, (16)  at which the 2s::fattergers are in contact. At this[particular
densityp = (1/2/ 39R ™ and the lattice constangis ./5R
6) .\ _ .66 5 .4 4.2 3.0
s(t) = y’Cl - 15y°C{ + 45/°CY - 15y°CY (17)  Since ato = 4/50, the horizon is finitee, the particle can

fly freely only for finite distances, the motion of the particle

7) 7T 6 5 5.3 4.1

st = ycl-21/C? + 105/C] - 105/C;,  (18) is strictly diffusive. Initial conditions of the moving particle
are assumed to follow a canonical distributia®, positions

5(8)(0 = BBC?—28V7C? + 210V6Cf - 420V50t2 r={r,ry} are homogeneously distributed in the area not

+ 105y4C?, (19)  occupied by the scatterers and momqmaz{ px,f)y} are
distributed according toP(p) U exp{—B(p; + p,)/2m}

9ty = Y’ -36°C + 378/C° - 1260,°C° All results are presented in dimensionless units Withl

5 1 R=1andm=1.
+ 945/ C;, (20) Nonlinear response functions from order 1 to 11 obtained
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Figure 2. Response functions(l)(t) S“)(t) to a single short
pulse acting on the Lorentz gas depicted in Fig. 1 (all respons
functions of even order vanish due to symmetry). The respons
functions shown in the figure where obtained from correlation
functions calculated as averages overl2’ trajectories initiatedta
canonically distributed initial conditions and for a densityocf
(4/5) where py is the close packed density. The average time
between collisions is= 0.474 in the units described in the main text.

numerically for the Lorentz gas using Eqgs. (12) to (22) are
shown in Figure 2 as thick lines. Since all eweresponse
functions vanish by symmetry, only the oddresponse
functions are depicted. The thin lines denote results for .
stochastic model to be discussed later. While the first orde
response decays almost monotonically, the nonlinear respon
functions acquire additional features. The first characteristic
feature appears at approximately half the average tim
between collisions which is= 0.474 at the density studied
here. As one proceeds to higher order the response functio
begin to display oscillatory behavior which becomes more
pronounced with increasing order. The exact physical origir
of this behavior remains to be explained in detail.

An interesting observations is that for systems with harc
interactions, such as the Lorentz gas, canonical nonline:
response functions to arbitrary order can be written in term
of simple microcanonical autocorrelation functions. To see
this, we write the correlation functic®™ (t) = Tpi(0)p,(t)O
as the canonical average:

-Z—nﬁ]—AJ’drdpexp[—BU(r)]

x exp(—Bp°/2m)pypy(r.p.t)

() =

(23)
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whereU(r) is the potential energy of the system arahdp

specify the position and the momentum of the moving
particle, respectively. The integration over space extends
over the unit cell of the triangular scatterer lattice Arid

the area in the unit cell not occupied by a scatterer. The

above expression can be simplified by noting that initial
conditions differing only in the magnitude of the momentum
but not in its direction yield identical trajectories in

configuration space. Integration over all momentum directions

then yields:

(1) = £ fdpexp(-pp’r2m)p™ *Ciltpim) ,  (24)

where p=|p| and CRU(t) = (PX(O)P(D)/pThe i a
microcanonical correlation function. Since for a system with
hard interactions

CPR(0)Py (1)/P The = CPY/PLhe LD (0)Po(t)/P°The  (25)
and ifn even

[l .
pph, = 0 0 if n even

(26)
on/(n+)I1'if n odd
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Figure 3. DeviationAS" = S"(t) —SL(t) of the response func-
tions S(l)(t) to S(ll)(t) from the response functions predicted by
the exponential model discussed in the main text. Since the
exponential model is based on the assumption that subsequent
collisions are uncorrelated, any non-vanishing deviamiSW(t) is
due to correlated collisions of the moving particle with the
scatterers.
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the correlation functiorﬁ:(”)(t) can be finally written as time at,o (4/5)00 for a particle with unit speed. The deV|at|ons
ASV(t) =5 (t) —s(t) of the response functior®” (t)

c) = Z.n_z_l_)ﬁ = [ dpexp(Bp Z12m)p"*2 to S*V(t) ofthe Lorentlzl)gas from the corresponding response
unctions t) to t) predicted by the stochastic
f to( ) o (1) dicted by th hasti
X EbX(O)pX(tp/m)/p Che s (27)  model are shown in Flgure 3. By construction, the stochastic

model neglects all correlations between subsequent collisions.

for odd order. For even orddﬁ(")(t) vanishes. From thesény non-vanishing value of the deviatiaxs" Q) must be
correlation functions response functions can be calculatetherefore attributed to correlated collision sequences. The
using expressions (12) to (22). signature of such correlated events is clearly visible in higher

This relation between canonical and microcanonical correerder response functions shown in Figure 2. Higher order
lation functions allows us to analyze the information contentesponse functions should therefore be capable of serving as
of the nonlinear response functions shown in Figure 2 usingensitive probes for correlated cooperative motion in molecular
a stochastic model lacking correlations. In this model wesystems.
assume that subsequent collisions of the moving particle
with the scatterers are uncorrelated and that times betweenAcknowledgment The support of the Office of Basic
collisions are distributed exponentially with an averageEnergy Science of the Department of Energy, grant no. DE-
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that at each collision the particle’s velocity is randomized
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