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The transformation devised by Lecomte and Ueda for the study of resonance structures in the multichannel
guantum defect theory (MQDT) is used to analyze partial photofragmentation cross section formulas in MQDT
analogous to Fano’s resonance formula obtained in the previous work for the system involving two open and
one closed channels. Detailed comparison of the MQDT results with the configuration mixing (CM) ones is
made. Resonance structures and their geometrical relations in the MQDT formulation are revealed and
classified by combining Lecomte and Ueda'’s theory with the geometrical method devised to study the coupling
between background and resonance scatterings.
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Introduction transformation hereinafter. Using this transformation, Lecomte
found the best parameters to describe total cross sections
Though multichannel quantum defect theory (MQDT) isshorn of the background part for autoionization spectra for
one of the powerful theories for resonances in that it allowgeneral systems. Ueda derived total cross section formulas
us to describe complex spectra including both bound andnalogous to Fano’s resonance formula for some cases
continuum regions with only a few parameters, resonancécluding one closed and an arbitrary number of open
structures are not transparently identified in its formulationchannels. Giusti-suzor and Lefebvre-Brfoand Wintgen
as resonances are treated indiréctyn order to identify — and Fridrich® did the detailed study for the system involving
resonance terms, special treatment is needed as Giusti-Suzan closed and one open channels and Cdhfem the
and Fano did for the two channel system by the phaseystem involving two closed and two open channels. The
renormalizatior?. They noticed that the usual Lu-Fano plot present paper deals with the system involving two open and
often obscures the symmetry of the curve in it which isone closed channels and is thus more restrictive than the
apparent when the plot is extended to infinity. The symmetryprevious work in this sense. But the present work obtained
can be brought into the MQDT formulation by using several results which are absent or not dealt in the other
the techniques first considered in Ref. [4] which move thepeople’s work. It obtained the partial cross section formulas
origin of the plot to the center of symmetry by the use offor photofragmentation processes analogous to Fano's re-
base pair whose phase is shifted from that of the base papbnance one, which is not trivial since it is generally believed
(f, g) by L that final state distributions described by partial cross section
(f. Q) - (f cosm - g sin, g cos +f sinm) (1) formulas contain detailed_pieces of.information sensitive to
' ' ' some features of dynamical couplings. The present paper
By this phase renormalization, the diagonal elements of shor&lso succeeded in obtaining the complete relations between
range reactance matricksbecome zero and the resonance MQDT and configuration mixing (CMY*®formulas for this
structures are separated from the background in two channebncrete examples, the general features of which were studied
systems (Dubau and Seaton also obtained the same resultsba$ore by Fano and Mié&!° We achieved this by refor-
Giusti-Suzor and Fano's ones from a different apprach ~ mulating MQDT into the form of the CM theory using
The generalizations of their method to systems involvingGiusti-Suzor and Fano’s method so that the Lu-Fano plot
arbitrary numbers of open and closed channels were dorteecomes symmetrical. But the short-range reactance matrix
by Cooke and CromérLecomte’ Ueda® Giusti-Suzor and K obtained in this way in Ref. [20] was not the kind of form
Lefebvre-Brion® Wintgen and Fridrich® and Coher! Cooke  considered by Giusti-Suzor and Fano in that its diagonal
and Cromet? Lecomte, and Ueda showed that, for suchelements are not zero. It means that intra- and inter-channel-
general systems, making the diagonal elements of reactanbéock couplings are not fully separated yet. Making diagonal
matricesk zero can only be achieved with the modification elements oK zero can be done by the method prescribed by
to the transformation so that it performs an orthogonalecomte’ In the present paper, his method is coupled with
transformation of basis functions besides a phase renormahke geometrical method developed in Ref. [21] for studying
ization. We will call this transformation the Lecomte-Uedathe coupling between the background and resonance
scatterings so that the hierarchical resonance structures are
"Corresponding Author. E-mail address: clee@madang.ajou.ac.kfully investigated and the MQDT reformulation is made to
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match fully with the CM theory. K =w™ KW,

In the following section, we will summarize the trans- W= YW, (7)
formation intro- duced by Lecomte and Ueda with some
additions needed for the present work. In the next section,
we consider the short-range reactance matrices in vario
channel basis wavefunctions and investigates the resonan
structures using the Lecomte-Ueda transformation. Afte

Besides the reactance matkixanother type of reactance
atrix k is considered by Lecomte. If we consider the short-
fange scattering matri& corresponding t&, it is related to

that, the photofragmentation cross sections and relations S=(1-iK)(L+iK)™, (8)
between those_and t.he _CM_ ones is d.enved. Finally, thg here exp2id) instead of exp(@) is used forS with the
summary and discussion is given in Section 5. consequence ofs being replaced by from the usual

formula of Sin Eg. (8) as our interests are in photo-

The Lecomte-Ueda Transformation fragmentation. Let us consider the partitioningof

We may describe the Lecomte-Ueda transformation using S= ES‘JO e E
either standing-wave channel basis functions or incoming- 0 o ccd
wave channel basis functions. Both descriptions have their 0s*s*0
own advantages. The former is suitable for the study of thavith indicesc for closed channels arwlfor open channels.
reactance matrik which provides much simpler description Thek* matrix is defined using the submat8x as
than the scattering matrix. The latter, on the other hand, is c_ . ce .oyl
suitable for the description of the photofragmentation cross ST=(1-IKA +iKT) (10)
sections. We will give both descriptions. From the definition, we can express in terms of the sub-

A. The Lecomte-Ueda Transformation in Terms of matrices oK as
Standing Waves Lecomte and Ueda considered the trans- cc e .co, . oo-1 oc
formation in which the basis sets are not only phase KT =KT =K (H +KT) K™ (11)
renormalized but also transformed by an orthogonal matriXrhe k¢ matrix is an effectivé& matrix when open channels are
W Let us denote the regular and irregular p&ifi,(®igi) at  not observed in photofragmentation and can alternatively be
R = R as (6, 6) . The Lecomte-Ueda transformation obtained by setting the coefficients of outgoing waves in open
changes this pair togdefirigd as channels to zero following the prescription described in Fano’s

" _n . book? where the coefficients of incoming waves are set to zero
o = JZ(GjV\/jicosny | OWsinTs), as scattering is considered. Lecomte noticed that%hisatrix
transforms under the restriction\W° =W°=0 as

9)

6" = > (GW;;sinmy; + 6 W cosm) ) ]
J . . . K% = (WD KW Ssinmu® + cosmu®)”
so that the standing-wave channel basis functions < (ch(anchc cos~ sinmd). (12)
Y= Z(eiaik ~ 0Ky, Rz Ry (3) Now consider the eigenchannel wavefunct¥p of the
' physical reactance matriX'  which can be obtained as a
are transformed to the new ones superposition of?,’  of Eq. (4) as
ka, - iZ(eildlk _ éi'K'ik)' R> R) (4) qu' - kgpwklzkplcosapl + ngL]Jk'ka'COSBk' (13)

®i in Egs. (2) and (3) is the wavefunction describing all theand satisfies the boundary conditiorRat. « as

motions in thei-th channel except for the one along the _

coordinateR in which fragmentation takes place aRglis W) - 5 (69~ 6'Ky')Ty, cosd,, (14)

the value ofR beyond which channels are decoupled. The kP

transformation relation for the reactance maktiss given in  whereP andQ denote the sets of open and closed channels,
matrix form by respectivelyd,’ the eigenphase shift #r  ghd is the

0
accumulated phase shift in tkeh closed channéf Now

[ J— T) 1 -1 T) — 1
K= (W( KWsinm + cos) (W( KWeosmu = sinu) we want to make Eg. (13) satisfy the boundary condition
() (14). For that purpose, let us first consider the form of Eq.

and the one for the wavefunctions by (13) inR= Ru:
W' = ZHJJ-[W(cosnp - sinruK") . (6) W, = J_ DZP[ 62, °cosd,’
]

N 100-,0 10C 1 =1 C
If Wis the unit matrix, the transformation is reduced to the = 6(KT2cosd + KcosB 2 )]
one by Giusti-suzor and Fano. On the other hand, if the +y [Gj'Z'fpcosBj'
phase renormalization is not done, ifg.= O the reactance igQ
matrix and wavefunctions transform in matrix form as - 6'(K'*“cosB'Z'° + K'*°Z'°cosd)jp] . (15)
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The coefficient of the exponentially rising term of the secondwhich are obtained from Egs. (17), (19), and (22).
sum on the right-hand side of Eq. (15) should be zero. The B. The Lecomte-Ueda Transformation in Terms of In-
closed-channel forms &'  adil obtained from those ff coming Waves When we consider the photofragmentation

andg; in Ref. [23] are given by cross section formulas, it is much more convenient to use
incoming-wave channel basis functions instead of standing-
=y, f ®.[-D, f+WCCCOS( B + mu) wave ones. To handle incoming-wave channel basis functions,

HQ ! usually the basis paif{, f~ }is used instead bf¢}. But,

+D; f_VVCCS|n(BI + )], f,* are just exponential functions defined as exR@) with

(R= Ro) k = ,/2m(E - E;) and do not directly correspond to the

e pair {f, g}. (When thei-th channel becomes closek,
-y, D(}fq) [Diff Wi'sin(B, + m;) becomeski.) It may therefore be a good idea to introduce
. the basis pair which directly corresponds to it. Let us define
+ D i Wi'cos(§ + )], (16)  this basis pair ag”  which is relatedffo as
with f‘ which are introduced to denote exjKR), respec- 2m in,
tively, for the open channels but become exponentially de- (A > J; 'f
creasing and rising terms esg(R ), respectively, for the i (R2Ry) (24)
closed channelk] =ik; = ,/2m,(E - E;) ]. Substituting Eq. _ 2m -in,, -
(16) into Eg. (15) and setting the coefficients of the ex- @ Z'A/; i
ponentially rising term to zero, we obtain
(K" + tanB, )cosB Z'° = —K'©°Z'°c0s5, (17) for open channels and
wheretang,, is defined as Q+:_1Feﬁ'(Df +iD; f ),
c c . Cc_: cy—1 2 TiK; (R=2Ry) (25)
tanB,,’ = (coPBW cosru® - sinBW  sinmu°) =

- _1/m -B + ol
x (sinBWcosmu® + cogBW sinr) . (18) @ =5 /H—Kie (D;f" = iD; ),

The massm in Eq. (16) denotes the reduced mass for th%r closed channels. The relation between them is given by

motion along the coordinatR in the channel and k; is —@ . They are related to the basis péird} as
defined as/2m;,(E; — E) with the enerdy of the system @ a Y parg}
and the core enerdy in thei-th channel. Comparison of the @ = _(f_ +ig,)
asymptotic form of¥, given in Eq. (14) with the open 1
channel part of Eg. (15) yields o = é(_fi +ig;), (26)
IO o r
Zip=Tips

005,0 oc c regardless of open- or closed-ness of channels. The phase
K'™"Z'"cosd + K' C0$'Z' =K'T'cosd. (19) shift n in Eq (24) is the one for the base Fﬁmndg, for an

| rting Eq. (17) into Eq. (19), btai open channel. . . .

neering B, (17) into £q. (19). we o _Tn The Lecomte-Ueda transformation changes this gain?

K' =K'= K%K + tanB,/) "K', (20) M@} into a new one. Let us denote the old pair 5 87}

and the new one asdf, & }. Then the relation between

which is different from the well-known relation two pairs is given by

K' = K'°° = K'°%(K'*® + tang') "K', (1) =54 w,d™,

in thattanf' is replaced biamg8,Eq. (18). Two relations —iny
become identical whew ® is the unit matrix. Notice that, in Z 0 We . (27)
order for¥’, to be eigenchannels, the following relation -
holds from Eq. (14): As W is real, we have the relatiof) =-6, . With this

(Torer transformation, the incoming-wave channel basis function

TVK'T =tarnd. (22) “) . ~
W' =5®(@ad- @Sk, Rz R (28)
|

Therefore the meanings tdnd amd as eigenvalues and
the collection of eigenvectors ¢’  still remain the same..5nsforms into
The eigenvalues and eigenvectors Kif may be obtained ) . ~
alternatively by solving the so-called compatibility equations Wy =500~ ¢ Si'). Rz R, (29)
given in matrix form as :
By inserting Eq. (27) into (29), we find the transformation
(K'°° - tand')Z'°cosd’ + K'*°cosB'Z’° = 0, relation between two wavefunctions as

K'®°Z"%c0sd + (K’ + tanB,/)cosB'Z’° =0,  (23) W = gOwd™ (30)
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and the one for the short-range scattering matrices as AC=(tanB +i)(tanB + k') K’ (4 +K'°) 7 (41)

g = ™MW MNgWwd™ (31)  and Eq. (39) becomes

!t may be easily checkeq that the relation bgtween_the IS ITIOIN 5 w'f(_)[(tanﬁ' +i)
incoming-wave and standing-wave channel basis functions ! J are

is invariant under the Lecomte-Ueda transformaiien, 1 1
. x (tanB + k') K (=i +K'®%) 1. (42)
W = T WL +iKY),. (32)

] It can easily be shown that similar equations to Egs. (30)
Notice that the summations in Egs. (28) and (29) includednd (31) hold for the physical incoming wavefunctions
closed-channel contributions which can grow exponentially.¥’; * and physical scattering mati& in matrix form as
The physical solutions satisfying the boundary conditions at ) (5)r 00_ime°
the asymptotic region can be obtained by the superposition W =W (43)

of W) as o o
“ s =™ W Msw %™ (44)

If the original matrixS is symmetric, its transform given by
Eq. (44) is also symmetric wheé# is real and orthogonal.
so that they take the following form in the asymptotic regionThe reality of W also ensures that the transform of the
) " e reactance matrix given by Eq. (5) is ré@l. = Simplies that
Wil (679 -6;S;") (34)
I

L'Jrj(_) =ZLIJIE(_)AKJ_I = z LPIE(_)AIEJ + z LPIE(_)AIEJ (33)
K kTP kOQ

the related processes are invariant under time reversal. Thus,
with Wreal, the Lecomte-Ueda transformation conserves the
and the coefficients of the exponentially rising terms becoméime reversal invariance. Notice that channel basis functions
zero. The incoming-wave boundary condition is satisfiedcannot be used to describe a fragmentatibﬁ) process

when when a particular channel is observed at the asymptotic
0 _ region as they are given by superpositions of fragmentation
A=1, : . é_) .
0. o e o processes. Thus channel basis functidf _ which are
STAT+S AT=S, (35)  obtained from the Lecomte-Ueda transformation cannot in

general be used to calculate partial photofragmentation cross

which yield the solutions . ) : .
y sections. In this regard, wavefunctions obtained from the

AC=_(S%- eZiﬁw')—ls,co' (36)  fragmentation channel basis functions by the phase renor-

, malization alone are different and can still be used for the
whereexp(2,’) denotes calculation of the partial cross sections. Wavefunctions
2By il ooy () 208 g ime produced by the Lecomte-Ueda t_ransformatlon including an

e = (W) e W™ 37) orthogonal one, however, can still be useful for other pur-

From the solutions (36), the physical scattering matrix is?0S€s. They can be used to find eigenchannel basis functions

scattering matrix as tribution. They can also be used for the calculation of the
Jip 1 total cross sections as Lecomte and Ueda did as channels are
S =8%-35°%(s“-¢ B ) S (38)  not detected separately in the measurement of total cross
sections.

In Appendix A, it is shown thak' of Eq. (20) can be derived

from S' of Eq. (38). Before ending this section, let us briefly comment on the

. ; - . . atrix B,/ . The right-hand side of Eq. (37) is a product of
3\év'tg thesc:egxpanslljon c9§ﬁ|0|ents obtained in Egs. (35) anc{J“nitary transformations and is itself a unitary transformation
(36), Eq. (33) can be written as and thus can be expressed as the form given on the left-hand
() =g ) V() rarce 2By \lqco side, wheref,,/ is the Hermitian matrix and no longer
W=y - Y S”-e S k. (39 . o .
! ! ng i 1 ) la- (39) diagonal. Though it is difficult to show that the right-hand
] ] c side of Eq. (18) is equal to the tangent function of this matrix
Inserting Egs. (A1) and (A3) in Appendi A™™ of Eq. (36) g ' it should be so as we can derive one from another as
may be expressed in terms of the submatrices of the shott,own in Appendix A.
range reactance matrikas C. The Restricted and Successive Lecomte-Ueda
co_ . cc . eel,. , Teransformation. Lecomte and Ueda’s transformation is
AT = (1 +ik)(tanfy + &) (i + tanBy) too general for most purposes. Many useful conclusions can
x (1 + iK'CC)_lK'CO(—l + K,oo)—l' (40) be drawn with more restricted tran_sforma_tions. Throughout
the paper, orthogonal transformations will not be allowed
which is rather complicated. Whei'™ is the unit matrix,  petween closed and open channel basis funciiegaye =
Eq. (40) becomes simplified as WP = 0. With this restriction, Lecomte-Ueda transformation
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is described by, uf, W°, W and will be denoted by people’s convention of calling this extremum point the
T(re, s, W°, W). Let us first consider the orthogonal ‘pole’. It is different from the mathematical term ‘pole’
trans- formation which is allowed only among open channelvhich includes an imaginary part as well.) Thus the
basis functions,e., let us consider the transformatibfrg.L, condition Cig kG{)at t0 tan indiBating that

e, WP, 19 and the problem of separating out the intra-it is also the condition for positioning the resonance center to
channel-block couplings from the inter-channel-block oneghe origin in the Lu-Fano plot. But, here, it should be noticed
in the reactance matrices. The way to separate thoshat [(k'°®) =0 does not mearK'°=0 . They are
couplings out in the reactance matrices is to let basifentical only wherk’®® =0 . As we shall see, the case that
functions have intra-channel-block couplings as far ask’®® is not a zero matrix bufl (k'°®)  still remains zero
possible so that they are removed in the reactance matricpgays an important role in studying the resonance structures.
as far as possible. Or, adjust the parameters in the Lecomt8ince the pole position is moved to the origin in the Lu-Fano
Ueda transformation so that intra-channel-blocks ofplot when[lék$)callGhis kind of representation

reactance matrices become zero as far as possible. Lecontte “resonance-centered representation”. As stated above,
showed that this can be achieved up to the level thatot only Khilt also caK'He made zero with the
K'°°=0andK';°=0 [=1,...N; (the number of closed transformationT(r, ., W, 1% when there is only one
channels)] with the transformatiof(r°, e, W, 1°9  closed channel. In this case, bdih(x'“°) andk'°°)
when there are no degenerate levels in closed channels. Letcome zero and, as will be discussed more in detail later,

us briefly describe this. the rank of the physical reactance matrix is one, which
The submatrixk8f  Kan be related to the unprimed indicates that only one channel basis function shows a
guantities in the same way as the whidle  matrix is relatedesonance behavior while others do not. In other words, the
to the wholeX: resonance and background contributions are completely
00 )00L 5004 0Oc- . 0 ot separated. We will call this kind of representation the “pure-
K = (WK WP sinmu® + cosi®) resonance representation”. If there are more than one closed
% (\/\/(T)OOK"°°V\/°°cosnp° ~ sinr°) (45) channel involved, the pole position is approximately
obtained atlef] tarB’ + 0 (k'“)] = 0 ".In this case[J (k')
if we introduce thek”°®  matrix defined as = 0 meandl;jtanB’ = 0 and resonances are centered.
Further discussion on this problem is beyond the scope of
K" = K - K*%sinmu®(K Ssinm® + cosm) K, the present paper.
(46) Let us next consider the successive Lecomte-Ueda trans-

formations. At first, the Lecomte-Ueda transformation starts
¥om the base pair for a single fragmentation channel.
Generally, the base pair after the transformation does not
belong to a single fragmentation channel and becomes
unsuitable for the description of partial cross sections. But, if
Lecomte-Ueda transformations involve only phase renor-
malization, the base pair after the transformation still remains

freedom in choosing the values pf. The best way of . . .
X : : in the same single fragmentation channel and can thus be
choosing their values is, of course, to make the elements 0 - . .
used for the description of partial cross sections.

,ccC . 00 _ .
K’ Zero as far as possible.Hf = 0, the corresponding It is sometimes useful to consider the single Lecomte-

,CcC .
K in Bq. (11) becomes Ueda transformation as composed of two successive Lecomte-
K'°C = K'®¢ - jK Kk °°¢ (47)  Ueda transformations. Successive Lecomte-Ueda transfor-
mations considered by Lecomte are the ones that the first
and we havek'*® = O (k'“) . If we apply thé conditions  transformation only changes the base pairs for open chan-
of D(K'ﬁc) =0 (=1, ....,N) to Eq. (12), we have\, nels followed by the change of the base pairs for closed
equations fory® which completely determing®. That is, channels. We can easily show that these successive Lecomte-
with the conditions of zero diagonal elementsigi’ *°) allUeda transformations are equivalent to a single Lecomte-
the transformation parameters ©frge, e, W°, 1°9 are  Ueda transformation. For example, if the first and second
determined and no freedom is left in the transformation. IfLecomte-Ueda transformations argu°, 0, W°°, 1°9 and
we consider the system involving only one closed channelT(0, 7., 1°°, W), respectively, the,T, is equal to the
the complete separation of the intra- and inter-channel-blockingle one given bif (7, ruf, W°°, W*). In this case, the
couplings expressed a§'°°=K'°“=0 is achieved withorder of transformation is commutable, thafTis; = TiT.
this transformatiorm (7o, rus, W°°, [€°). There is another case where a single transformation can be
Let us limit the discussion to the system involving only easily decomposed into two successive transformations.
one closed channel for the time being. In this case, théctually, all the Lecomte-Ueda transformations can be con-
contribution of the closed channels to the physical wavesidered as composed of two successive transformations, first
functions (42) becomes extremum atfan 0(k'°) = 0 by an orthogonal transformation and then by a phase renor-
at which resonance takes pldtgWe will follow other  malization byr.

The right-hand side of Eq. (45) may be made zero by simpl
choosing the transformation parameté® and 1° so that
WKW equals tame. But notice that the definition
of the K"°° matrix requires the values @fin advance. Of
course,K'°® = 0 regardless of the valuesubfas far as
WPDK "W equals tamgf. In other words, we have
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Applying the Lecomte-Ueda Transformation to the K Na = R(6s)z (52)
Matrix for the Two Open and One Closed Channel
8 —
System cotd, = —coth),—2—2 Ja (53)

. . ,/sf, +1

Recently, for the system involving two open and one
closed channels, we reformulated MQDT into the forms ofwith gy —cots, /cosAgz &, or 6, are defined as
the CM one, where we find that the resultant reactance
matrix still keeps non-zero diagonal elements even when the B _ sinAY,
axes of the Lu-Fano plot are translated so that the plot ~ £a=—COt, ~ sing,
becomes symmetricdl. This contrasts with the system
involving two channels studied by Giusti-Suzor and Fano,The original scattering matri® differs fromS only in that
where the symmetrical Lu-Fano plot is obtained for then, is replaced by sirde,(6,)n,
reactance matrix whose diagonal elements are zero. This _ _
contrast can be studied by using the Lecomte-Ueda trans- 500, 300,  (Q+5) —is,amh,
formation. Before doing this, let us briefly describe how S=e se =€ e .

such a strange reactance matrix is obtained. The physiciatl is shown in Ref. [21] that of Eq. (51) can be obtained

scattering matrixS can be written as a product of back- : . .
ground and resonance terms,, S = S°S. The background from &% andss; of Eq. (48.) by ”.‘a"'”g use of _sphgrlcal tri-
gonometry for the spherical triangle shown in Figure 1. In

scattering matrix8® may be expressed in matrix form3s= A
U°exp(—2?5°)U°m with >t/he bacpkground eigenphase shiffs Ref. [20], Giusti-Suzor and Fano’s method of phase renor-
(i=1, 2, ..)and the orthogonal matti#. The resonance malization is used to transform the physical scattering
scattering matrix likewise may be written into the form expmatnx of MQD.T into a fofm of CM given in Eq. (55). This
(=2i8P;) for an isolated resonance whéés the phase shift reformulation is not a simple task if three channels are
(aar rthe resonance and is defined-bytd = 2E-E)T involved since eigenphase shifts do not transform linearly
with the resonance energy and the half-widtif . P, is the but in a rather complicated way by phase renormalization,
described by the spherical triangle in Figure 1. The sum-

rojection matrix into the resonance eigencharférlet us . . .
Eon]sider the transforms®MSU° UO(T)SOngO and U°MS U0 mary of the results of Ref. [20] is described in the next sub-
' ' section.

and denotes them & S°, ands;, respectively. If we restrict . .

the number of open channels to two, the orthogonal matrix A. Translation of the Axes n the Lu_—Fano Plot .MQDT .

U° is expressed with one parameter, §ayas expi 6h5/2) can be reformulated so that its physical scattering m&trix
’ Y

and the transforms&® andS, may be expressed in terms of takes the form (55). Th's can be. achieved when the short-
Pauli matrices 3525 range reactance matrix can be writtef? as

(coto, + cotAgzcosGr) . (54)

(55)

0 = (0L + 40

S =e—i(5,l+5ro’Ehr’) (48)

r ’
Whereégz 62 + 62 A?zz 62 - 62 anch,’ is defined as
N’ = R(-A1)R(6)2
= (sin6,cosA,, —sind,sinAY,, cos,) (49)

with 6 defined in terms of half-widths; andl"; as

r,-r
cosh, = —+——+,
r,+r,
2T T
sing, = 1% (50)
r,+r,

Ref. [21] obtained

S=5% = e—i(5§+5,)e—iA‘jzoZe—i5,oDw,' Figure 1. T.he spherical triangle formed by the three vect
r n, and n, is shown, which is used to show the geome

(L +38) —isoh relationships among various eigenchannels employed to

=e “e U E (51) resonance structures. Also shown is the spherical triangle f

by the three vector®, z andn,, which is used for the Gaili
wheren, andd, are given by average of the partial cross sections.
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2{ trk* [K“trk®® - tr(K°°K°%)]

O Al AL . 1 O
O tan—zlzcose0 tan—zlzsme0 —"(A—Oco$(9r +0,)0 ~ | 00| cc
O cos—= O = +(1- K DK KD}
O 2 O tan( 2””3) - 00,2 cc, ., 00 0Cy,COyq2 (63)
0 A° A° 1 O (trK™) = [K™trK™ = tr(K™°K™)]
K = B tan—zlzsine0 —tan—zlzcosze0 —E'—U sinE(Gr +0,) % ) )
B coséz12 B +(1_|K00|) - (K= KI)
O 0 O
DJA—OCO%(& +06) JA—OSin%(Gr +8,) «Eztanéz’-zcoser 0 and
Bcos—z12 cos? B 2{(1- |K°O|)tI’K00 + [Ktrk®°
(56) - tr(K*K“) (K = |K
- tan(2ruy) = —— LK KK KDY gy
whereé is defined by (1 - K"+ (K= KD - (trK®)
~0c’,co 2
g = (K K0 O)_ (57) - [K*trK” = tr(K*°K®)]
1- ‘K ‘ . Using the relations
In this representation, the physical scattering ma®ix is 00n . CC. 00 06, . co
shown in Ref. [20] to be related to the scattering matrix KKK = tr(KTK™)]
S(CM) of the CM theory given in Eqg. (55) by 0K + (1 - KOy (K - K]
K =
. .50 00| 2 00,2
S=e™s(CcM). (58) (KT = 1) + (k)
~ ccy 2 cc, ., 00 0Cy, €0y 12
S of MQDT can completely be made equal to that of CM by |,°9% = (K =K7) +[KtrK —tr(K K")] . (65)
phase renormalization but is left in the present form in order (|K°°| - 1)2 + (trK°°)2
to make the Lu-Fano plot symmetrical. This point will be 63 b .
explained shortly afterwards. Let us denote the solutions olf:'q' (63) can be rewritten as
the compatibility equation ce
patiotiity €q tan( 2mu,) = 22K ) (66)
REPLk
~ 00 “‘ ~0C
K ~—tan5 3 K _|=0 (59) If we recall the transformation relation (}Q feftc, it is
K K+ tang easily checked that Eq. (66) is equaligk ) =0 The

- - latter is true for th&  matrix given by Eqg. (56). Actu&ﬁf/
for this system agand., an@nd- . In this formulation, the corresponding td is obtained as
eigenphase sunds(= & + 4-) is made identical to the

~CC .2
phase shiftd due to the resonance in conformity with K =-i¢ (67)
Simonius and Hazi's theoréftt” by imposing the condition  gnq is purely imaginary.
tanZSz = —fz/tanb, (60) We earlier started that the representation wlie(récc) =
) ~ 0 belongs to the class of the resonance-centered representation.
which holds wherK satisfies Let us repeat it by restricting the argument to this specific
rk®°=0, K*“=|K|. (61)  representation, The pole position in Eq. (42) and observables

oo~ o . o ) are given by the root of the real parttahg + K for the
This K matrix is obtained from the origingl matrix by  gne closed channel systeim,,

only allowing the phase renormalization. Here, it should be

noted that the Lu-Fano plot for the system involving two tanb + D(,}CC) = 0. (68)
open and one closed channels is composed of two cyfves (

&) and B, &) However, the graph we want to make If we want the pole position becomes the origin of the Lu-Fano
symmetric in the new coordinate system is not those twalot (83, 9ds) , thenD(Rcc) should be zero so tifat  is zero at
curves. Those two curves are not suitable for that purposthe origin. Thus the value @& given by Eq. (63) is the one
because of the mutual repulsion which makes both graphshich moves the origin of the Lu-Fano plot to the pole position.
complicated. The one we want to make symmetricaBis (  B. The Matrix in the Background Eigenchannel Basis

Js) as the eigenphase sum in CM shows the same behavidhe short-range reactance mati , given in Eq. (56),
as that in a single open channel proi3feih yields the Lu-Fano plot where the pole position is the origin
2(E-E) but the matrix still has non-zero diagonal elements, meaning

0-(CM) = 62 - cot 1% = 62 + 9. (62) that intra- and inter-channel-block couplings are not fully

separated yet. Notice that, in order to obtdin , only phase
To make the Lu-Fano plot symmetrical, the teﬂn S(efv) renormalization is used. But, Lecomte and Ueda previously
is removed inSas shown in Eq. (58). Letg; andrus denote  showed that making the diagonal elements of reactance
the shifts to8 and Js, respectively, so that the new curve matrices zero cannot be achieved by phase renormalization
(B, ds) is symmetrical. Their values are obtained in Ref. [20]alone. We have to include orthogonal transformation as well.
as Before considering the Lecomte-Ueda transformation
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which makes the diagonal submatrié€8 andK* zero, let
us first consider getting rid d& from the reactance matrix
K. The way of doing this is to transform the basis functions O = lIJ(—) (73)

from the background fragmentation ones to the background 3 3

eigenchannel ones as we will see below. It corresponds to thierom Egs. (43) and (44), the transformation relations between
transformationT[0, 0, 0, exp{hay/2), 1°9. (Previously, the  physical incoming wavefunctions and scattering matrices are
notationT(r, i, W°, W) is used to denote a Lecomte- given in matrix form as

Ueda transformation. A little modified notatidiirgy, b,

=) =(— ~() ~() L
(@0, 9 = (f1, w2 )e2%%,

= ~(-) _I ~() o
s, WP°, W) suitable for the system involving two open PO =y ez%% =g U,
and one closed channels may also be used. Since they havea - i, ~ i, 0T 0 -8 -i5,0m
different number of arguments, no confusion may arise in S=€2°"Se27Y=U""SU"=¢e ‘e . (74)

using both of them at the same time.) If we use the doublgpere expiayg,/2) is identified with the original matri®
bar for the transformed quantities, the transformation,nich diagonalizes the background scattering matiof
relation _between the reactance matrices are given D¢ sinceS_ is identical t6 of CM except for a trivial

= AT . . . —
K'= W KW according to Eq. (7), wheW is given by scalar factorS is identical t8 except for the trivial factor.

0 00 1 0 Since the background scattering matrixJ#"SU° of CM is
W= ow’® o0 . De—'z"o"y 0 H 69 diagonal, the incoming-wave channel basis functions (73)
O - O 0 (69) obtained from the Lecomte-Ueda transformafl§®, O, O,
we O O
0o U g o 1°°p exp(i6ay/2),1°9 are background eigenchannel basis functions.
C. Complete Removal of the Background Part irK. Let
It can be calculated as : - . .
us now consider obtaining the reactance matrix whose diagonal
g , B B 0 elements are zero as considered by others. Inspection of Eq.
_ O e'i"ﬂ"vkooe"ieﬂ"v e'zeo"vkoc O (72) shows that this can be achieved by remotify from
K= E L Er (70) K. The removal can be accomplished by two consecutive
E kcoe—iz%ay Kee E Lecomte-Ueda transformationg(0, 7. 1°° 19 and T

(g, 0, W°°, 1°9 considered by Lecomte and described
- 00 before.T: is built to makeI (k") zero. We first notice that
Using the Pauli matrix form ok in Eq. (56) given as we do not have a use fdr as the real part &f°° is already
zero. In other wordsT; is the identity transformation. The

~ )
K = tarb,A1,0 LRy(60)7]. (71)  parameterg andW for T are defined as eigenvalues and
- _ _ eigenvectors oK"*®  of Eg. (46). Sinde is the identity
the K- matrix may be rewritten as transformationK”°° equak®® . Thatis, they are obtained

by diagonalizing<Bt K98 already diagonalized. Thus

E AY, £ 1 E W™ is the unit matrix and® are given byAJand
0 tan7 0 0 Coséer 0 —A,/2. Let us deglote th% reactance matrix obtained by this
O COSA—lZ O transformation &y, /2:-A1,2, 0,1°, 1°) asK . The only
E 2 E nonzero submatrices i af8°  dkd and calculated as
0
R = é 0 —tan712 EAgzsin%Gr % K = R*°osmu° = KCOCOS%Agz = Efcos% 6., fsin% Grg
cos—=*
% > % (75)
0 g g
E%cos%ﬁr & 5 sin%@r Eztan%zcosar E o 1 6 =oc DECOS%Gr O
0. A A, 0 K= cog5A3,K™ = 5 H (76)
[ c0s5° cos=* m a Esin:—Le .
(72) 20
Notice thaté in K is removed irk and included into the Overall, theK matrix is obtained as
transformation. The transformatidio, 0, O, exp(-6o,/2),
1°] causes a similarity transformation in the reactance matrix g 1.0
as K =W'KW and therefore eigenvalues of the reactance E 0 0 §cos3 6, E
matrix and the solutions of the compatibility equation (23) _ O 1 O
are not changed by it. Accordingly, the Lu-Fano plot remains K=0 o 0 gsinze, 0 (77)
invariant under the transformation. E E
According to Egs. (7) and (30), only open channel basis DECOS%Gr ESin%Gr 0 E

wavefunctions are transformed by this transformation. In- 0

coming-wave channel basis functions, for example, arote that the parametgifor the K matrix is not changed by
transformed as the transformations and remains the same as th@on@ =
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= 3 + s as the transformations do not change the phasthe short-range reactance matkxso that it contains only

shift for the closed channéle., we have the inter-channel coupling paramefdny separating out the
_— . geometrical parametefi. This can be achieved by the
B=B=pB=pB+ s, (78)  orthogonal transformatiow given by
The physicaK matrix correspondingo is obtained as 0 0
_ _ ~ _ce-1_ O .1 O
K = Koo _ Koc(tanﬁ + ch) cho W=[ e—lzerdy 0 0 (87)
Ll 21 1, 1,0 5 0 1°g
2 E cos éer sin3 Grcosé 6, E
= 7= n 0 which can also be expressedTd8, 0, 0, expfi6.a,/2), 1.
tanf sin:—LGrcos:—Ler sinz:-L 6 U Let us denote the reactance matrix obtained by this trans-
o2 2 2 u formation ax.. Then, it is easily obtained as
_ &1
=——— > (1 +o0h,), (79) O O
tanB 2 ( ) 000¢
Kir=OoooD (88)
wheren; is defined as 000 E
n, =R(6,)z = zcosy, + xsing,. (80) ) i )
Since the transformation does not include a phase renor-
Eq. (79) can be rewritten as malization, we have
K= tanérPr, (81) Br - B - B (89)
where we have made use of ) Using the relatior§ = (1-iK,)(1 +iK,)™?, the short-range
tans, = - L~ (82) scattering matrig is easily calculated frond; as
tang
O 2 O
and gl1-¢& —2ié O
1 0 1+ 62 0 1+ 62 0
_1 O O
Now let us conside® which is relatedko of Eq. (81) by E —2i& o 1= & E
2 2
= = =\ - + +
S=(1-iK)(1 +iK) ™. (84) O1+¢ 1+ o
By inserting Eq. (81) into (84) and making use of Using Eq. (90), the form of incoming-wave channel basis
L _ functions useful for the future derivation is obtained as
(1 +iK)  =1-P, +e'%cos,P, (85) )
- + 1- - 2i -
and the properties of projection operators, we obtain (W), = (), - s ;(er )1t 1 +££2(9r)3'
S=1-P, +e20p =g?25P = gldgiooh,  (8p) (W), = (), - (6), (R2R). (91)

Let us quit at this point the further study of the properties (N ot 1- 52 _ 2, -
of the present representation as the present one has only a (Wr)3=(6)s- rfz(er)s + 1+ Qtz(er)l'
use for providing a means of obtaining more important
representation, which will become clear later. In the CMBy making use of the formula (30), the transformation relations

theory for an isolated resonance, the ‘a’ state considered igf (Lps_))i with other incoming-wave channel basis functions
Ref. [14] plays an important role. The continua in CM for anare given in matrix form as

isolated resonance are divided into the ‘a’ state and the

remaining ones orthogonal to it. Only the ‘a’ state can O iy,
interact with the discrete state to produce resonance () = @(_)Ee 27 OE
phenomena while the remaining continua can contribute to the o 0 1
resonance phenomena only through the interference with the _ _ _
‘a’ state. If we can construct the kind of ‘a’ state in MQDT, - (—)E e—'zeooy 0 % elelzoz 0 EE e—lzeroy 0 E
the MQDT reformulation can be directly compared with the =Y O 0o 1 EN 0o 1 M 0 1 O
CM theory and utilize all its advantages. Let us do this in the g (o t u
next subsection. o ) ) 0
D. The Matrix in the Resonance Eigenchannel Basis = 70 50, bl10:6 569, o (92)
Let us consider further elimination of the matrix elements of E 0 1 E
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Or, more specifically, we have (WH)),). We may S|m|IarI}/ conS|der thg ()-element of the
transformation matrle(JJ (|l4J )I ) between corresponding
(W), (¥),) = (qu , qu )e channel basis wavefuncitons. From Egs. (93) and (99), we
(@7 e - N
- r 1, r 2 ) ~ (—) — ~ (—) - _190 lA‘llZ L _I_er
o, 8= B owi, B itcaitioton
(W), =g = d5. (93) i
(100)

Likewise, we can obtain the transformation relation between
scattering matrices. For example, let us consider the relatioRrom Eq. (B9), we also have the relation
betweenSand S. For the later use, if we express sub-

. . . ~ (=) - ~ (-) -
matrices ofS in terms of those §f they are given by E‘-P,— ‘(Lpf N, E: B-IJJ- \(wﬁ ), O-e 5 Z(qJJ )‘lp(')) |
101
§° = 3B Mg (6 + 80, Sfoez(e * )0y zAlz"EhU wherei = 1, 2 corresponds & b, respectively.
. The physical reactance matrix can easily be calculated
& = 30k Mg 56 + ), VS, from the short-range one given by Eq. (88) as

K, = tand,p,, (102)

$082 * 6 )Uye 2A120Eho
where the projection operatpris defined as

‘=g, (94)

where the following relation is used: p=5(1+0). (103)

e‘iz e zAlzcze_zeroy —e zAlzo'EhUe 2(9 +6)s,  (g5) By making use of the relatiod = (1-iK/)(1 + iK™, the
physical scattering matrix can be calculated from the
Let us now consider the physical incoming wavefunctionsphysical reactance matrix as
whose closed channels decrease exponentially in the

asymptotic region and whose general form is given by Eq. S =e'oeo% (104)
C . . .
(39). From Eq. (90)A, s calculated in matrix form as Notice that thisS: is the diagonal form of the resonance part
. ce 2|ﬁ 1 e S (CM) in the factorization of the physical scattering matrix
A=—«(S5"-e ) S into the background and resonance par8=as°s; (CM) in
|£(tanB + |) the CM theory. This indicates th&tis represented in terms
(1 0 ( witf = B) of the resonance eigenchannel basis functions.
tang - Now, let us consider obtaining the solutions of the com-
_ _.(p+5)gi_Dl 2(1 0 (96) patibility equation for this representation. Let us denote the

solution of the compatibility equation as Then the compat-
ibility equation (23) for this representation yields the follow-

and the physical incoming Wavefunctidm'é_) become ing equation:
0 = 2
O - - 7 O1/2 tand (tand tanB + =0, 105
(WO = O (q”$ ))1 + (qu ))39_'(ﬁ+5’)5%51 forj =1, ( LARE (105)
ra o g which yields two solutions consistent with those of (102)
O (% ). forj = 2. and (104), namely, only one of them has a nonzero value
b (97)  whose phase is equal & just the phase shift due to the
resonance. Expansion coefficients);, are equal toT)i, =

A, fori O P and become far( Q as follows®

E fcosd ﬂj_rDlﬂ

The physical incoming wavefunctiot®”),  a#”),
correspond to the CM wavefunctions as

forp=1,

= — _'5r
(W1, (W),) N=(e™ "W @(em), wP(cm)), (98) (Z)3p=0 sing  Cap" (106)
P D B B
as shown in Appendix B. According to Eq. (43), the physical O 0 for p = 2.
incoming wavefunctions of the r-representation are related to o ~
those of the tilde- representatlon in matrix form as This may be compared with the coefficient for te
o matrix obtained in Ref. [20] as
LIJ( ) — -y e 2 yezAlz ze 2 6, y (99)
Let us denote thg, ()-element of the transformation matrix Z _ gi_DVZD cos; ef forp=1, (107)
between the physical incoming wavefunctions of the r- DdBD E .
representation and those of the tilde-representatioWjas (| O Sméef for p=2.

O
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E. Transformation Diagram and Hierarchical Structure one nonzero eigenvalue given by the tangent of the phase
of ResonancesThe transformations and resultant reactanceshift & due to the resonance. The representation where a
matrices considered so far can be summarized with theeactance matrix has nonzero elements onlKfoandK*
following diagram: submatrices so that the physical reactance matrix has rank

0K one was already considered and used by Ueda for obtaining

0 oo cc a Beutler-Fano total cross section formula in MQDT for the

O O(k*)z0 Ty, MUy, Mg, 177, 17) systems involving one closed and an arbitrary number of
open channefSRepresentations showing this behavior were

0 0(k*° . T

O(k™)#0 called the “pure-resonance representations” earlier in this
O~ paper. In the two channel system, the translation of the origin
E K of the Lu-Fano plot to the inflection point 1sccequivalent to
OO0k =0 00 26,0, |cd finding the phase renormalization so tha(k ) =0  and
0 e 5 TEO’ g | E O(k ) =0 For thqc%ystem involving two open and one
E O(k ) ==¢ closed channels]l(k ) =0 is still the condition for the

~00 location of the origin to the inflection point of the Lu-Fano

O O(k )#0 ~00
O plot, butC(k ) = C is no longer obtained by making the

— Lu-Fano plot symmetrical through phase renormalization.
OK
0 It may be convenient if each representation has its own
o0 (ﬁcc) =0 TDlAO :—LAO 0 (°° (e name. Let us call the last four representations in the diagram
E O(R™) = —62 12 o512 = b as the tilde-, double-bar-, bar-, and r-representations, respec-
o - tively. The diagram shows that the Lecomte-Ueda transfor-
O00(R*®)#0 mations among these representations are expressed in terms
0 0 of parametersg, Agz, and 6 which are used before to
0K oK, construct the spherical triangle in Figure 1 for geometrically
O  _c 1 O coy representing the coupling between background and resonance
E O(k)=0 T%) 0 0e2%% |c% O(k) =0 ~ scatterings in the scattering matrix. Therefore, it may be
0 0(k™) = -8 _0 . @0k =—g2  natural to examine the correspondence between the diagram
a o U 00 and the spherical triangle. Though in MQDT all the open
E Ok )=0 E (k) =0 and closed channels should be included while only open

(108) channels are involved in constructing the spherical triangle,
this is no problem in the current study of correspondence as
In the above diagram, the last four representations belong #@e four representations of our interests differ only in open
the group of the resonance-centered representation as tBRannel parts. The space spanned by open channel basis
values ofC1(k*°) are zero in all of them. Actually the valuesfunctions for each representation appears as a coordinate
of k* themselves are the same in all four representations agstem in Figure 1. This coordinate system undergoes a
k°® = - &. This derives from that the four representations argotation about the/ axis to a new one by an orthogonal
connected by the transformations with no phase renorransformation in a Lecomte-Ueda transformation. It under-
malization and no orthogonal transformations in closetgoes a much more complicated transformation by phase
channel base pairs so that remains unchanged as evident renormalization as we will see in a particular example shortly
in Eq. (12). Generally](k;;) =0 does not implyf =0 afterwards. A physical scattering matrix is represented as a
and W = | as can be easily seen from the counts of thesector in the space (called the Liouville space by #no
number of conditions. But if it is assumed to be so as invhere the spherical triangle is drawn. In Figure 1, the
the present system involving only one closed channel, akoordinate system corresponding to the tilde-representation
resonance-centered representations have the identical enefigygiven byxoyoz (the X, axis is not drawn in the figure).
dependence in wavefunctions (42) and subsequently in therom Eq. (74), we see thag' s transformen,tby T[O, O,
cross section formulas. The important thing worth of noticep, exptifoay/2),1%9, i.e., na = R(-6p)n,’ in the transforma-
related to the resonance-centered representation is that then from the tilde- to the double-bar-representation. This
present system has a resonance-centered representation, gh€ans that the coordinate system is rotated aboy thés
tilde-representation, which is suitable for the description ofpy g,. Therefore the axis of the double-bar-representation
the fragmentation processes and obtainable from the starting equal to the vectarin the figure. Let us next consider the
representation by the phase renormalization alone. transformation from the double-bar-representation to the
The last two representations enjoy further zero given byhar-representation. The coordinate system corresponding to
O(k ) =0(k, ) =0. If KK™"<1, the solution for  the double-bar-representation undergoes a rather complicated
both's being zero is obtained only when bitfi®and K'®®  transformation. In order to see what is happening, let us

are zero as shown in Appendix C. For this solution, theconsider the formula o8 frof® and then rewrite it as
physical reactance matri' has rank one and thus has only follows:
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S=e'% eéA‘Izvz o %0 eizA‘Izoz the transformatio (7, 0, W°, 1°9).
- i o Let us first conS|der the tilde representation. From Eq.
_a e_ZA””Ze—iGrthr’ eZA”"Z (56), the submatrik0f Kean be expressed as
-5, -ig0lh, ~
=e ‘e : (109) K = tarea®,o [y, (113)
8120 o

The second equality of Eq. (109) follows from the reverse
coupling of Eq. (51), that is, where the vectang is defined as

eiA‘jzoZe—iaaoma _ giaom (110) no =R,(6p)z= ZCOSG0 + xsing,. (114)

which shows that the phases are not simply renormalized/Vith thls K°° (- + K° ) can be written ascos@lz 42)
Actually, eigenchannels which are the very nature of dynamiexpt |A120 No/2). Multiplying this into the submatrik
coupling are also changed. Such a change appears asofa K in Eg. (56), the physical incoming wavefunction
change from, to n, The phase is renormalized fromd, to decomposing into thieth channel becomes
&. The third equality of Eq. (109) indicates that the phase o6 A o

~ ~ (= + U -z
renormalization also causes the rotation of the coordinate LIJ,( ) qu( + fwé) tanB+| Ee( o "o 2 129 UE
system about the axis by—A12 , that isp, = RZ(Alz)nr . tang - i£20 uf
The Lecomte-Ueda transformation from the bar-representation

to the r-representation corresponds to the rotation of theJSing the relation (115)

coordinate system about tgeaxis by-6, so thatn, is now

thez axis in the r-representation. —I(ﬁ +o) o2 _ tanB + | (116)
Let us end this section with some comments on the above DdBD tanB

resonance structure diagram. The representations in t

diagram are classified with respect to the structures of thntf can be put into
short-range reactance matric&s Short-range scattering 5,7 _
matricesS cannot be used for this purpose of classification '~
as they still keep nonzero diagonal terms eveS.iit may
derive from the restrictions scattering matrices should satisfy Uy BD 0 Oy
such as the unitarity and the existence of the pole due to the (117)
resonance. The latter pole structure, visible in Eq. (90), is

absent in the reactance matffix’In order to obtain the bar- similar to the form derived in Ref. [31] for the two channel
representation, we do not have to consider the double-basystem. The explicit expression of the last term of Eq. (115)
representation. It can be obtalned from the tilde- one by thés given by

~ (- /2 6, +86 ——A Ch
R I e Ly Ee( 00y 8z ]

transformation T[O:)@Z /2, A12/2 -i1602), 1°9. -
Also the rrepresentation can directly be obtained fromO.3(@ +90)"ve‘5A12"D’OE
the tilde-one by the successive transformatloﬁfsalQIZ 0 Oy
A 2/2 0, expti6ay/2),1°9 T[O, 0, 0, expftib.g,/2), 1. . .
1 1.0 .1 1.0
Photofragmentation Cross Section Formulas _ E cosz(eo * 6f)0052A12 S|n2(90 * ef)COSZAH E
o ) ] E 199'1'A0 "lGG'lAOE
Though it is_customary in MQDT to use the asymptotic D—'Cosé( 0~ r)S'n2 12 —|S|n2( o~ r)SmZ 12
eigenchannel®, to expa “hs
0 . o
~ (- I .0 I .0
W = z‘Pngj), (111) ) %cos%@ocos%ae_iA12 sin%@ocos%ae_i%gL w18)
it may be more natural to use the incoming waves as E 1 1 i 1 1, i E
expansion channel basis functions as in Eq. (42) which is —sméeosméerez 2 CO§905'n§9r92 “ 0

reproduced below:
Now let us introduce the new short-range wavefunctions

‘P',—(_) = Lp'j(_) + , andet&‘mded by
(5) i H 4 1CC -1 1CO/ 100 -1
W tang' +1i)(tanf’ + K K™ (-1 + K B ~ (- ~ ~ ()
ng k [(tanB" +1i) (tanf ) ( ) T M7 =07+ O Ri + K Mg,
(112) S ) 1)

Strong energy dependence enters Eq. (112) only as a term Nj

(tanB +i)(tang + k'° " and becomes simpler in the
resonance; -centered representation (&3’ +i)[tang’ + so that the square of the modulus of the transition dipole
i0(k"™")] . As stated before, the term is invariant undermoment is expressed into the Beulter-Fano formula:

=y, f_% [K(=i + K%~ ]3, (119)
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~ ~ (o ~ly L i(Baa .22
. . o i tanBl & + al? O Z |50 4 5O @) o B+ 8- &2 T
501 = @i = il e aL D7 = o7+ 85wl e a0 |
tan /& + 1
(120) (126)

WhereD,-(_) denote(sw,-( )|T|i) . Let us next take an average
of Eq. (126) over one resonance interval with respe® to
The energy dependence of an interference term is given by
either (tang + i)/(tanB—ifz) or its complex conjugate and
its integral over one resonance interval can easily be shown

whereT is the dipole moment operatostands for the initial
bound state, and the complég< gives the line-profile for
spectra and is defined by

QIS
aj = J—E‘&_Jﬂ (122) to be zero. Getting rid of the interference terms and utilizing
(Mj ITIi) the integral ff,z (do,/dB)dBI = Ig dd,/m=1 , the energy

The forms of M) andNGlnctions which yield the average of Eq. (126) over one résonance cycle is obtained as

Beutler-Fano formula are the same if the representation Eﬂ~(—)‘2 _
. . Dj | 0=

belongs to the resonance-centered one. In that representa

tion, the physical incoming wavefunctions are expressed i

terms of them as

o * + B w®g . aen

%q. (127) is identical with the result of Gailitis's formula

given by
~ . ~ 12
o = o=l F « SSE0F
tanB/ -1 tanB/£2-1 1-|Sx
= (M7cosg, +iNsing,). (122)

as can be easily seen from Eq. (Q&,—|2/(1— |Se,3|2) is the
Here MJ—(_) plays the role of the background wavefunction inprobability that break-up of the resonance gjvasd in the
the CM theory and dominate the physical incoming-waves apresent form is given by

the region of no resonance effect where the phasedstiie

to the resonance is zero. EspeciaW,_) is related in matrix O 9? .
form to the standing-wave channel basis functions belonging |és|2 5 EbOSZE for j=1,
to open channels as _|3_|2 - ‘(w(a)le(—))‘ =0 ; (129)
_ . 1- d . .0
W= M1 +iK°9). (123) S DsinZEr for j=2,
_ O

Eg. (123) is the contracted form &f; = ZJ—HJJ-( )(1+ iK);i
with MJ—(_) corresponding tole(_) . In this case, the where 9? is defined as the side angle faQ of the

contractions is made so tHHI(,—H alone measures the partigpherical triangleAAAQ in Fig. 1. Notice that the frag-
cross section in the region of no resonance, which is attainatientation branching ratio averaged one resonance interval is
by making the contribution of regular part of closed channelsletermined byCOSZG?/Z sinZG?IZ where is constant of

Zero: energy and the same for all resonance levels belonging to the
() _ - 00 _ - ev-lecor same threshold. The unaveraged branching ratio varies as a
M =6 iDzP 8 o iDzQ (6 +6)[(1+ST) ST, function of energy as far as the line profile ~ apd are

(124) different.
A. Total Cross Section Formulas and the r-Representa-

+ — . :
L+ 0. . . . .
where (6, +6,) is eventually a unitary transform of only tion. As is well-known, the photofragmentation cross section

iregular functions®g.. Eq, (120) may be used to obtain formulas take the simplest form in the r-representation

. Y s ~ ~
partial cross sections (for L(MJ |T|')‘ ) .D(ql)' f(g) , which is corresponding to Fano’s ‘abc..’ representation (the
and the functional form of tgh  as a function of energy from,_, . . . . ;
a’' state is also called the ‘effective continuum’). In the r-

the experimental data using the method developed in the

; =)
field of modeling of datd? For sharp resonances, we may representation, o_nIy th.e process ([wf shows the
. : resonance behavior while the remaining processes, the one
use the well-known first-order expansion

to (LIJS_))2 here, are ene(r%;y—insensitive. The transition dipole

tanb E_E moment formula to(W;’); can be expressed into the
== N /2” (125)  Beutler-Fano form with introduction QMS_))J- a guﬁ‘))j
3 n defined with the same formula as the one (119M P and

near then-th resonance to extragh andl, instead of the Nj 7, i.e,
functional form oftanB as a function of energy from the

experimental data. (MS_))l - (ws_))1+if(‘“$_))3,
In some experimental situations, cross sections averaged i
over resonances are only observable. For this, let us first (Nf‘))l = (wf‘))l—z(wS‘))a,

write the square of the modulus of transition dipole moments
using Eq. (117) with Egs. (100) and (101) as (M), = (NOy, = (¥, (130)
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With these, the elements of the transition dipole momention of the anglé, defined by

vector to(uéf’?);e written as

5 22
(00, = (M), T
tang/ & +i
(D)2 = (MYITI) = ((W)IT),  (13D)
with the line profile indexy defined as
=) ;
r_i((Nr JAIID) (132)

(MO Ty

In the r—representatior(,Mf_))j ar(de_B come stand-

q, o __—1
1+0
Eqg. (138) becomes

cos@q =

3 1B = (wpumia s a)sinf(s + 6,
]

+ (W), [T, (140)

if we take an average of Eq. (140) over one resonance
interval with respect tQ3 and use the formuld”*  $in
(8, + 6,) dB/m= (&7 + 1)/[(1+ &) (1 +q;)] , We obtain

ing waves. From Egs. (32) and (88), the relation between 0 ‘Bf_)‘2D= %(|((q’r)1|T|i)|2+ |((l4Jr)3|T|i)|2)
1+¢&

standing-wave and incoming-wave channel basis functions

is obtained as

(W), = (W) HEW)s,

(W), = (W),

(WD) =18+ )
Comparison of Egs. (130) and (133) yields

(133)

(M{)y = (W),

(NT), =5,

(M), = (N), = (W),
Inserting Eq. (134) into (131), we obtain

B tanB/ &
(D), = (W), 1) 2t
tang/ & +i

(D), = ((W)),ITl)

(134)

(135)

with the new formula for the line profile index

) i
(G D) (136)

E(WO),ITl)

The new formula fog; clearly shows thai; is real.
From Eq. (99), the transition dipole moment ved]lf)F)

is D related by the unitary transformation as
~(_ i i i
D) = D e s%%e 2 % 3%, (137)
implying that

3 57 = 3 oy
joP joP

tang/ £*+9,)°

= |((wr)l|T|i)|2(tanzblf4+l (W)TIE. (138)

With the substitution-cotd for tanﬁ%/‘,Iz and the introduc-

jaP
+ (W), [Tl

= (T2 + [T + (W)l

2
’

N A DA O RN I B-A G N
=@ mpl @ ml”+ @ mil’, wa

which is the expected result from the theorem due to
Gailitis®® and ensures that total cross sections are continuous
across the thresholds.

Eq. (138) resembles the well-known total cross section
formula for photofragmentation in the neighborhood of an
isolated resonance given'by

2
(e+Q)

Oyt = 04 2+q1 +o, ( CM (142)
&

if we substitutes for tanﬁ/fz. In Eq. (142),0, andg,
denote the cross sectionsg&® and aég)pectively. For
the comparison, let us first relat®,), (¥,), , dte),
with L,U(a), L,U(b), and P, respectively. From Egs. (91),
(133), and (B2), we have Rz R,
(W1 = (6))1- ()1 +iEL(6))5 + (6))4]
= YO+HE(G)s+ (63,

(w,),= ¢,

(W)s = (67)5=(6,)5+1EL(67)1 + (6] (143)
From Eqg. (B15), we have
% o 1 . _
. - -[(6)); - (6, ,R2R,.
n(Zk|VkE| 2)1/2 E{COSZB[( )3 ( )3] a~ R)
p=nm - (144)
Then
(s 3 —(a)
n = n +L,U
=NV V)
RGO CoR R Z(ENs= (@)  ReR

(145)
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and we obtain from the identity

! 1 } _ g ) O
———— (W), @46) (W) + ()W) =
(= |Viel) (153)

Eqgs. (143) and (146) tell us that the background parts ofhe |dent|t (153) derives from that the transformation
MQDT and CM are identical but the resonance parts whichmatrix (Ns’, M}Hﬁa{py) (n@atky. From it

are described by closed channels in MQDT and by a discret@nd Eq. (133), we obtain

state in CM become equal whémecome zero. As a result,

we obtain the approximate equalities between MQDT and (‘(‘4J )1)((‘4J( )) ‘ + (HJ( ))2)((HJ( ))Z‘WJJ

CM formulas for smalf :

e

— ; =) =) =)
((Lpr)1|T| i) ﬂ(w(a)|-|—| i), (147) - l'IJJ + 1E(Wy 7)s((Wy )1|ij ) (154)
((W)glTli) (e Tl Then
— r’3 En ~(-) -
r— = ; g(CM). } ) ;
SR (i) m(z Ve )l/2 S l(w[ (2;)((%)1ITII) =p-i&a;, (155)
(148) CImun
Notice that the difference betweeﬁlblJ )and |s¢éfﬂ whereo; is defined as
exponentially rising term in f[(e )s+(6,)5] from Eq. ~() o) )
(143) but its contribution to the transition dipole moment (Wi 1w, )1)((qJ )3|T||)
L o L o g = (156)
vector becomes finite as it is multiplied by the initial bound (HJ |T| i
statei. Then in the narrow resonance limit, Eq. (147) is !
expected to hold. We finally obtain
B. Partial Cross Sections and the r-Representatiorin anB/f +3;
order to understand partial photofragmentation processes, it = (HJ, |T| N(1-iéo )—1 (157)
may be better to express them in terms of the elements of the ang/ &+

transition dipole moment vector of the r-representation. ThIS
can be achieved with the transformation relation (137)
between transition dipole moment vectors. Using the

whereg;; isrelated tq; =i+p,(q,—i) as

i—iéq,o;
transformation matrices (100), we have g; = 9’%1 (158)
i
= (D( )) (LIJ |(LIJ$_))i) and it can easily be shown that
igpP
~() . . ~ (=) e -
- z (D(_))(LLJ(_)KLP(_))) (LIJJ |T||)(1_I€O—J) = (MJ |T||) (159)
r | r |
ioP
I -~ ~C) o _ whereby Eq. (157) gives the formula identical to the one in
= (&7 tanB/ & +q, (W1 (W 1)) ((W),[Tli) Eq. (120) as it should be. The paramgter s the analogous
= (¥ tanb/£2+i ‘L'(_)|T|' form to the line profile indexp; (CM) for the partial cross
(W) ) section in the CM theor~y defined agCM) =i+ p(CM)
qJ qJ( ) q_,( N ITli [a(CM)-i]. The parameteq, may also be written as
- O DT (149 ~
(LIJJ ITII) g =i+ p(a,—i), (160)
Let us definep, as
b W) ST with gglefined as (p —iéo;)/(1—iéc) Notice that g
LIJ l'IJ T | ] ] ] r
( : |(‘Pr~2}))(( SHLD (150) andg; are obtainable from the total and partial cross section
(W5 |T) measurements, respectively. Then, Eq. (160) tells us that we

can obtainp;not p; from those two measurements. dfis
negligible, the line profile indice§; ~ amgbecome equal to
the CM line profilegi(CM) index as shown in Appendix D:

in analogous tg, (identical to Starace 'sal(jE) %) of CM
defined a¥

_ @@ _ (e, “>|T|i)

(g ITl) (w ITli) -
whereP; is the projection operatormb . Then, we have Here, as shown in Appendix D, the above MQDT
(q_,( )|(‘“( )) )((q_,( )) |T||) parameters differ from the corresponding ones in CM not
1- L 2 2 (152) only in the resonance parts but also in the background parts

(HJ, |T| i) though the difference in the latter is the second ordé&rim
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contrast to the case of total cross sections. S = _2i (1+K ) K (1 + iK%
Summary and Discussion S = —2i(1+iK ) K (LK),
S = (1-ik™)(1+ik"™)7, (A1)

The dynamics in the reaction zone are studied in the usual
MQDT by the distortion of a fixed regular solution along a _ .
fragmentation channel in the outer region. The extent of the K" = K=K (= 4 KT K, (A2)
distortion is given by the short-range reactance matkces |et us first rewri’[es’cc—exp( AB.) as
which multiplies an irregular solution. Giusti-Suzor and L , o
Fano modified the usual theory so that the part of the core S e = (1-ik ) (1 + ik e WS e ™
dynamics incorporated into the base pair for a motion along =-2ie ™ W&’ (cosBW cosr’ ~sinBWsini°)
a fragmentation channel is no longer fixed. The freedom in L e R
the allocation of the short-range dynamics between the x (tanf’ + k)L + 1K) (A3)
motion along the fragmentation coordinate and the shortWe will need the following formula for the subsequent derivation:
range reaction matrixX is combined with the orthogonal
transformation considered by Lecomte, Ueda and others to
reformulate the MQDT theory into the form of the CM
theory and thus to make MQDT have the full power of thewhich can be easily derived from Eq. (A3) arf@™+ 1)=
CM one, still keeping its power of being able to describe thell * 1% )/2. Substituting Eq. (A1) into Eq. (A4), we obtain
photofragmentation processes with only a few parameters. SO =) (3 + 1) S
These parameters allow clear physical interpretation in terms
of geometrical transformations and interchannel coupling
strengths as in the work of Giusti-Suzor and Fano foiwith Eq. (A5), $¥f Eq. (38) can be rewritten as
systems involving only two channels. In the present work,
the geometrical transformations have more diverse origins
because of the additional open channel and are studied by = o"*°+2i(1+iK'") "K' (tanB,’ + k'®) "K'®(1+iK'*)™
the geometrical method devised to study the coupling (A6)
between background and resonance scatterings. The dynamigere the effectives’®®  matrix analogouskt8® is defined by
parameters with simpler and more transparent physical

100

wherek is defined as

(5= "~(5+1)" 2(1+|K’°°)(tanBW K (LHK),
(A4)

= -2i(1+iK'®) K (tanBu’ + k') K (1+K'*) ™, (A5)

S, — o_,oo_s,oc[(s,cc_eZiB\N')’l_(S,cc+ 1)71] S,co

origins or meanings responsible for the experimental data of K®=-i(1+0*) (1-0") (A7)
total and partial photofragmentation cross sections ar@nd obtained as
subsequently identified. 0% = PSS+ 1) S, (A8)

Notice that some short-range reactance matrices are
expressed with parameters specific to the open- and closetth Eg. (A6), we obtain
ness of channels even though they are defined in the region
where open- and closed-ness of channels cannot be defined.
This peculiar aspect of the present theory remains to bgrom Eq. (A9) and the following identity
investigated in the future, besides the extension of the
current work to the systems involving more channels. (tanBy +K'™) K™ (=i+K)™ = (tanBy +K"™) K (=i +K"™)",

(l+ S:)fl - (1+ o.,oo)*l _ %K’Oc(tanﬁw’ + K,cc)*lK,co. (A9)

. C . N . . A10)
Actually, full investigation of this point is very important if : . . (
’ . b . (20 ly obt; d.
we remember that the unified treatment of discrete angq (20)is easily obtaine
continuum spectra hinges on it. Appendix B: The Correspondence betweet?!”  ang®
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Suzor-Weiner for reading the manuscript and for their(w(”), and (Wbf)espond to the CM wavefunctions  —¥©
valuable suggestions and comments. exp(-id) and —W&pectively, we first need the following
relations:
Appendix A: The Derivation of Eq. (20) from Eq. (38) (6):=(6), = ¢,
(6):-(6,), = ¢ (B2)

We first notice the relations:
which will be derived below, wherg'®

) is the ‘a’ state introduced by
S = (1-ik")(1+ik"*), Fano and defined by
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= Vet Let us next consider obtaining the CM term corresponding to the

P (B3)  second term on the right-hand side of Eq. (B1). Using the formula
(ZdVie) (25), we can easily check that it is an exponentially decreasing
function as

() —
(p =

with dgnoting the incoming wavefunction for the continuum
which breaks up into the chanrellf we denote the discrete state by e?g _eils ). o —p. [Mep ™R B14
@ with energyE,, Vie in Eq. (B3) is defined by( @' |H| @) (6)s=€7(8)s Nk, ° (B14)
Fano's ‘a’ state can alternatively be given in terms of the backgroun

q:ls it is constructed so. If only closed channels exist, the above function
eigenchannel wavefunctiong, f&f  as

would be a true bound state. Since open channels also exist, it is not a
true bound state. As a good approximation, we may regard it as a

Zme(le|H|(pE ) [r_DUZ

Y = = =5 Yoete (B4) discrete state in CM. We can normalize it by the well-known
(ZdVied )™ Ord proceduré and thus can be related to the space- normalied in
CM as

where the last equality follows from the definition &, as
(UnlHl@) = JTo/2m and 27Z|Viel* = 272, |(Yn,

ELd i i _ %
see Ref. [21]). Note also from Eq. (50) that (€7(6):=€"(6,)s) |- sing, Rz R,.
( [21]) . (50) A VI s
(W) = A/;1 = cos%, From Egs. (B2), (B10), and (B1), we obtain
05, s, [} i
(W) = f - codl. @5 ()€ (E)) + %H [6°(8)0-¢"(6)),]
From Egs. (B4) and (B5), we have a
q ( ) ( ) . . ﬂlll(a)COSd _ w( ’siné, _ - —s
Yo = Y1087+ ,C057. (B6) M Viel')
singd, a
If we denote the continuum orthogonal ¢8” as ¢, it may be = —[CDE“ ek A ’cosé,] (B16)
given by MZdViel')
.0 6 where®: is the modified dlscrete state with endgintroduced by
®) — _ [ ' E,
W = mhsinT +,c0s5 (B7) Fano'®If we defineW® as-¢® |, then we have
From the above two equations, the relation between Fano’s ‘ab’ states ((q,p)“ (‘Pﬁ_’)z) m_(e*iﬁrqﬂa;’q,(b))’ (B17)

and the background eigenchannel wavefuncitons can be written in

matrix form as whereW® is defined as

a 90 y (5 +00,0) *i'er”y H
W) = (e =l g e e s, Yo = o, —I0___ yiicogs (B18)
(B8) MZViel)
From this relation, we obtain the transformation relation and extensively used in the CM the&iyf
(WO ) = 9552%’59“”@5“2”19’59'% , ®9)  Appemdix C: The Solution of 0 («x°®)=0 and[(k%)=0
A

whereA is used to represent ‘ab’. In the CM theory, we use another From bothHad®) 0K kE)ng zero, we have
type of continuum function which lagg’®  in phase by. 9Dwe

denote it asw ¥ itcan be expressed as K°® = K°°K®(1 + K°?) K™ (C1)
PY ==i[(@):+(6):], R2R. (810) KE® = KPR (L4 KO)KS, (c2)
T _ Let us limit the discussion to the system involving only one closed
From the relaﬂommﬁpgvenﬂZ = &2, channel. Then insertion of the formula (C1) K¥ into Eq. (C2) and
leq) (ir: ik Rer'géi _ %mi ¢%e¢ik,neiia, _ bj (B11) then rearrangement :)of tirms yield
N ] o . °°[1 KK o1+ K°°2)’1K°°} = 0. (3)
Using this relation, the background incoming ways can be ce2

rewritten as Eg. (C3) has two solutions, oneS" = 0 and the other is

—ik:R cc2
—e™ o _ _1+K
k 2IlDzF’ m (e 6 © S]k D(K ) =" copsoc * (C4)
K=K
o > oo [ 2 et g} } DR2R. (B12) K™=0 follows from Eq. (C1) ifK=0 . This is the desired
jop jk

solution. Let us next consider the other solution. In this case, let us
restrict the number of open channels to two as in the present system. In

P ; .0
Multiplying Eq. (B12) by exp(8:/2 ) expfi 6:0,/2 ) expl;0./2 this case, the condition imposed &/ for all the resonance-centered

exp(-i6,0,/2 ) and using representations is #(° ) =0 from Eq. (61). From)tK 2 and tr¢)
I P o =0, the conditio_nK?E)r_:tBe resonance-centered representation
> 6§ [e 270% e o YJ =(6"), (813)  means thaK® is a linear combination of only Pauli matrices. From
jop i (6)?=1, K°? is easily seen to be a unit matrix multiplied by a

and Eq. (B8), we obtain Eq. (B2). positive constant, saf. Then,
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—O(K™) = K*(1 + K*?) 'K = K®K (1 + a?) . (C5)  and jow differ from the corresponding ones in CM not only in
the resonance parts but also in the background parts though the
From Egs. (C4) and (C5), we have difference in the latter is the second ordeé.ifn contrast to this, the
difference between two theories in the formulas of partial cross

coprocy2 _ cc2 2
(KTKT) = (1+KT) (A +a)=1. (C6) sections does not appear in the background parts. Since partial cross
From the above equation and the positivenes ‘8K , we obtaigections are expressed in terms o (Tli ) in MQDT, let us
the conditionKffi$ecdnd solution satisfies. consider the relation betweeM: and . d. (119) can be

rewritten inRas R,
Appendix D: Relations between Parameters for Partial ~ G ~_ oo o (L e SO
Cross Sections in MQDT and CM Mi7=6 -3 8(0); -3 (6+8)I(1+S) Sy

iop i0Q

Thep, parameter of Eq. (150) can be rewritten using Eq. (101) as N = 6 - > 65"+ S (1-597"5,

iopP

20O (WO, Tli — e
g =e WG LT ©o1) 3 (- §YE, (09)
(W' TIi) i0Q
In order to give a relation to;  (CM) of Eq. (151), we need relations ofwhere o’ is defined in Eq. (A8). Using Eq. (D4) and after some
(W), andWfith  ydfld respiettively. From the relation manipulations, we obtain
(W)= [(W), =i &(W):]/(1+ &) inverse to Eq. (133) and Eq. voo  -in®om
(143), we have o =e 7,
o 1 @ oo ey _ ~een1%co [ Le+ayo, ~Ladam,
(W) = T AEE)H U@L R2 R 02) [(1+8Y8 )y =-igle et (D10)
- Then MR N
Next, let us considew” . Its form iR SisRgiven by enhand bedgme
. . oy e -~ L L L e+, —tadem,
YO =6 -3 6S° -6 (D3) MO = g0+ |§(93+93)[e2 e’ l‘, (D11)
igP ]
After some manipulationsS” arfi°  can be calculated from Eq. (94) TERRE ~_ i%om, )
with Sk 8- &0)(1+ &) §°=-21&(1,0)/(1+ &) NT=6 T2 6le e,
- 1 -i%om i e =[50 00, ket
- L Ezef. Lo 1 _ 2 om), - 5(93—93)[9 e L (D12)
T - in RBqR(D11) shows that  Mfll diffesdnly in the
§:z|0 __ 2 §2[eg(er+eo>uye—§mznmj ’ (D4) resonant part.
1+§& 1
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