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Qverlap integrals for the case in which the ground and excited states are represented by Morse potential functions were
derived. In order to calculate the spectral intensities in Morse wavefunctions, a method of expanding the wavefunctions of
one state in terms of the other was developed to allow the ground and the excited state frequencies to be different. From
the expansion of Morse wavefunctions, recursion formulas were developed for variational matrix elements of Morse wavefunc-
tions. The matrix elements can be calculated using these recursion formulas and the diagonalized results which eigenvalues
(allowed energies) were all successfully satisfied to Morse energy formulas.

Introduction

Spectral intensities in absorbances, fluorescence, Raman
and CARS (coherent Anti-stokes Raman Spectroscopy) at a
given wavelength depend upon several molecular parameters
such as ground and excited state frequencies, dissociation
energies, and displacement of the excited state along the nor-
mal coordinate of interest.

Inagaki, et al.* have evaluated the approximate overlap in-
tegrals for the case in which both the ground and excited elec-
tronic states are harmonic and identical, but displaced from
each other along the normal coordinate of interest. Therefore
the ground state and excited state frequencies must be equal
which limits the generality of the treatment. The treatment
on Harmonic oscillator was then significantly improved by
Berkowitz? by allowing the ground and excited state frequen-
cies to differ. With these results, Carreira ef al.’ have tested
the excitation profiles of N,N-diethyl-p-nitrosoaniline,
Potassium Permanganate and Potassium Chromate using the
program, and they have produced a satisfactory excitation pro-
file of the above molecules.

A thorough search of the literature revealed no closed form
evaluations of overlap integrals of Morse wavefunctions. In
this report we have developed overlap integrals for Morse
potential wavefunctions in which excited state frequency and
dissociation energy are equal to ground state frequency and
dissociation. Also, we developed relation for variational matrix
elements of Morse wavefunctions when frequency and
dissociation energy of excited states differ with those of
ground states.

A program has been developed to calculate the energy
levels and corresponding wavefunctions for Morse potential
wavefunctions.

Morse wave functions for the nuclear vibration

The Morse potential function in terms of displacement from

the equilibrium position 7, is given* by

V”, =De—za(r-ro}_2De—a4r—ro) (1)
where

(gﬂzcﬂwoxo )l/l

h

wox, = Spectroscopic anharmonicity factor in cm™
D = dissociation energy
The wavefunction derived from this potential are given* by

2da
n

(2de -*r""0) @)

e~ %(T-T0)

\ll',.(‘l‘)= ( )1/ze—d [zde—a(r—ro)](k—m—l)/: k-tn-1

k- n-1

where
d=27 @2uD)'*/ah, k=2d=47x(2uD)'"*/ah
L = associated Laguerre Polynomial of degree b-a

_ n (k—2n+s~-2)!
Nn=(k-n-1)11'2 T (Nn represents the
nomalization constant given by Morse* for integral K)

Transforming to the dimensionless coordinate, £, equation (1)
and (2) become (3) and (4)

V(&)=De-*¥¢—2De-% ¢ 3)
Y (6) = (B2 10me™ "(ageme Yonns|_2n (2de=") @)
where
Ba—k-2n—1, o' = (uy)"a, £=(uy)" " (r=n),
_4rxty

b and x= reduced mass

If the potential well equilibrium position is displaced by 4, ¥,
is given by;
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To simplify the forms of equations (3), (4), (5) following
substitutions were made; X=2de **, c=e¥4

»
%
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8. ) = (B e xnxoun 2 (X) @
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where the following notations are used;
¢ ; ;represent ground state wave functions, ¥, represent ex-
cited state wavefunctions.
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Overlap integrals with Morse wavefunction.
A. excited state frequency and dissociation energy equal to
ground state frequency and dissociation energy.

The first step in the evaluation of the overlap integral in-
volves the transformation to dimensionless coordinate X defin-
ed earlier.

X=2de~%* &= (uy)''r

dé = (uy)''dr

dz — - o' 2de~*"d¢ =~ ’XdE =~ —a’ (uy) "/ Xdr
remembering that o’ —a(yy) ? and rearranging;
dx

dra—i—
a x

Therefore;
[or o voo-aar=- > [x20r 0 v, €D )

combining equations (7), (8) and (9) gives
Gl

- By,2
2dc /;—(1+cyx/:xtn, +8y-2)/2

T NN @)

‘u—z ‘vw (CX)dx

(10)

This integral is evaluated using a method based on related
work done by Schroedinger.®* This is identical in form to
Schroedinger’s equation if the following definitions are made;

as=1, ﬂs=c n.=8,, K=i ns=4F, K;=Vx
p=Bit+B,1)/2

Rewriting equation (10) in terms of these definitions give;
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Schroedinger makes the following definitions:

a,+/3.g _ 2
2 X‘ o (a s+ﬂa) ’

X =0y
dX = o,dy
asX = (I+y)y=y+yy
BsX = (I-y)y=y-vy
Substitution into equation (11) gives;

Jomo [Tyrem |2 gty - re)dy (12)

Evaluation of the integral /, depends upon the expansion of
terms of the form L:(A + B).

B. Evalvation of J, integral

In order to further evaluate equation (12), expansion of the
Laguerre Polynomial evaluated at a sum of two functions of
y must be derived. Buchholz® gives an equation for the ex-
pansion of terms of the form L:[A(y) + B()] into terms
of L}A(y)] and L:[B(y)] which is modified here to fit
Schroedinger’s equation (12). From the context in which it
was used, the polynomial used in Schroedinger’s paper,
denoted by ,L: (), is a possible solution to the differential equa-

y= Ys= (as"ﬂa)/(as+ﬁs)

Therefore
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tion (13).”
yZ" )+ b-y+1DZ @)+ @-6)Z@y) =0 (13)

Buchholz defines the polynomial to be denoted as ,L: (¥) in
terms of equation (14).¢

yZ” )+ b-y+1)Z ) +nZ(y)=0 (14)

The two equations yield the following respective definitions
of the polynomial for integral a and b.”

L) = le” s %) (15)

Equations (13) and (14) are identical if n=a-b

Lt (y) = L5, (y) and L2 (¥) can be expanded in powers of y*$
b _ ok K+l (a! ): 3
Lo @)= (ais)
_ a-b _ x yk
& OV e

comparing (16) with (17), it is clear that
‘a!aL:—b(y)=aL:(y) (18)

Buchholz’s equation for the expansicn of 5L, [A(¥) + B()]
is given by

a- -B)2* . :
Ll @+p) -5 EBL] e ) 19)
Combining equations (18) with (19) gives:
acs (— a
woa+B) =B e (20)

From equation (20), it can be shown that:

ot = 2 (2T | ey g

a"’ As!
aL"s*"a(y 739) u{-o ((Z’i')_) l_::’::’ <y) (22)

Substitution into equation (12) and rearrangement gives:

e P 28 yas 28T © PrAgtu
Jmorn ¥ F (- ["yrersess
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_ Ng+A n
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Now we can expand integral part.

Agtug

Xg
p— + — ] 73
Js= 0" ‘/\é"ﬂ ;{,— (-1* As! us! Ko ue 24)
<“.s l‘s
Sk,-
KAS ug = (P+A +l~ls)' ns+ks)- (";+k3)! Z M;Ls,us.f(zs)
= (- ng+ng+Kg+Kg+t ( P+ug—ng P+Ag-ng
MAS' us ¥ ( 1) ° (:s—:s*f) Kl.g:\:s-r
(e (26)

where n,, k., n! k! and P and defined earlier.
Thus, the total overlap integral <iv> is given by

8y
b 2dC 2 (27)

(o) =———r NN s

Calculation of overlap integrals in the case of A=0 using equa-
tion (27) led to the following results:
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. &,=1, i=v
<l I U> — K 8 vl iv +
Y 8= 0, i )
Thus to fully normalize the wavefunctions, the normalization
constant is redefined by:
n - -1
Nae (k" (k=n=1)1) 2 (k—2n+S-2)!

3=0 s!

kNn (29)

Values of the relevant terms are given in Table 1 for
specific integrals of interest. (excited state frequency and
dissociation energy equal to ground state frequency and
dissociation energy).

Since the Laguerre polynomials are only real when a and
b are integers* the calculated value of k which typically ranges
from 50 to 1000, is rounded to the nearest integer for the pur-
pose of calculation, without significant loss of accuracy or
generality.

Recursion formula for variational matrix elements of Morse
wavefunctions. (v.#v,, D,#D,)

A. Excited state frequency and dissociation energy not equal
to ground state frequency and dissociation energy.

The Morse potential function expressed in dimensionless
coordinate, & is given by equation (3). Clearly, for the case
in which these parameters differ in the excited and ground
states, the potential functions will differ. Thus the potential
functions for the ground and excited states are given by:

Ve(g)=Dge et —2Dge“#* (30)
Vo (8)=D.e " 2D e “e* (31)

The respective wavefunctions of the two states will then be
given by:

P..5(¢)

2d -a, . s
=) e e ey e | e (deme) (32)

Yu.el€)

- (%{a_e) 1/1e—d,g—aee [Zdee_a‘er]ame/: . ::‘. :w(ztlee_a’ee-) (33)
where ¢, is the wavefunction of the #* level in the ground
state and ¥, s the V* wavefunction in the excited state.
Wavefunctions (32) and (33) are different but any arbitrary
well-behaved function can be expanded in terms of the or-
thonormal eigenfunctions of a Hermitian operator. If the ex-
cited state frequency is greater than the ground state
frequency, the excited state wavefunctions are expanded in
terms of a basis set consisting of the ground state wavefunc-
tions. Thus, for the case in which v.>v, and D, # D,

Table 1. Evaluation of Important Integrals of Morse

Wavefunctions
Integral n, k, n! k] P
<O|V> k-1 0 k-2V-1 |4 k-V-1
<O|i> k-2i-1 i k-1 (0] k-1-1
<V|I> k-3 1 k-2V-1 |4 k-V-2
<1|V> k-3 1 k-2V-1 vV k-V-2
<Vio> k-1 0 r-2V-1 |4 k-V-1
<Viz> k-5 2 k-2V-1 12 k-V-3
L|V> k-5 2 r-2V-1 1% k-V-3

i = ground state vibrational energy level. V = excited state vibra-
tional energy level. 0,1,2 = vibrational energy level.
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%u=Z“ Cu &, (34)

where the summation ranges over both even and odd values
of i. For the case in which v,<v,,
?, =2; Ci: ¥ (35)

where the summation ranges over both even and odd values
of t. Therefore, the overlap integrals of interest are of the form:

if ve>y, and D.#D, .

1YY= [8 ebo dem 5 Conlilm) 36)
V1i)= [$2 9, de=XCon tml}) (37)
if ve <y, and D.#D,

GV) = [Oluvuede=S Cultlo) (38)
V1id= [V, de=5 C,. Golt) (39)

Evaluation of the constants Com and Cit is necessary before
the overlap integrals (36) — (39) can be used.

These constants Com and Cit are evaluated by the formation
and diagonalization of a variational Hamiltonian matrix whose
elements are given by:

Ho= [0.20.0,dc (>v Do#D) (o)

Where &;,and ; ,are ground state wave functions and He is
the Hamiltonian operator of the excited state defined by:

H=T+V,: T=Lp (41)
2
Hv.l=f¢':. eﬁ:'/’:.edr (ve < ¥) (42)

Where ¥, and ¥, are excited state wavefunctions and H, is
the Hamiltonian operator of the ground state defined by:

He=T+V,: T=%I3” (43)

Hamiltonian matrix elements are of the form (for eqn (40)):

H,=T,, +Ve!.1 (44)

where
T~ [6tT9,d;
Vet. s =f¢tf}e o, dr

B. Coordinate Transformation of Hamiltonian and Wave-
functions.
The Hamiltonian of the excited state is given by
He(g')=T(¢")+V.(¢") (45)
In order to define the excited state potential (31) in terms
of the ground state (30), the following definition is made:

_% &

t a, ¢ (46)

In order to keep .L! real, as described earlier, ¢ is rounded
to the nearest integer. Thus: .

V. (£') =D, (e=%¢*)* — 2D, (e~%*)* 7)

Rearrangement with dimensionless coordinate X, (47) giires:
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V. (X)=AX* - BX* 48)
where

D. 2D,
, A=7=5, B=—7¢
(2d,)* (2d,)"
In terms of displacement from the equilibrium position (r - 7o),
the kinetic energy operator is given by:

X=2d,e %

- 'nz !
_-2” 81' (49)
From the earlier definition ¢ = (uy)"*r, o’ =a(uy)'*
X __ 1 50
o &’ (uy)'’X (50)
*° 82X 2., 38X d iy By
ari~ (ar 3%) " ar ax L7 Wr) X 5x)
3 ) X2 X ) (51)
= Huy) Xox+X5x

Therefore ;

2 K 9 _ ha,

- 2
T 2# ar [X +X ax=] (52)
- ——— ]
T E[X +X aX'] (53)
where
ha'ly
E 2
T=E(T,+T,) (54)
where
T =x2. by 0
T, _XaX and T, =X X
Thus;
'1:¢n. 3=E(i‘1 O, e+’i‘z Pn x) (55)
The wavefunction &, ,is given by equation (7)
Qn,‘ (thvzac) 1/ —x/lxﬂﬁ»l’/l’ :::+” (X) (56)
i‘l DPne= (ziv‘:/:') 3 [_';"X(’mtu)/’ sI__:::nu (X)G-X/'+
%Xﬂ.uz ::;,(X)e“/’+x““‘*””, a:::;
X)e %) (57)

Evaluating, and noting the fact that:
dlLi) 4.
==L )

- 2d
Tydno—( Al;:t) %] -x/:[ X(ﬂn.:ﬂ) ::;n

_ﬁT"’!X(pﬂwf“)/’ J_‘ﬂ.l (X) __X

(B, g+4) /2
‘n"d-ﬂ

Bp g+l B (Bpgtn/2 | A
B::Hl( )__n"X i ‘::+il(x)

_’_ﬂu‘(ﬂm:-:)xﬁn.l/: I_an,x (X)+hx‘(‘n,.+n/l
* 2

ﬁm Fad n

Bp g+l (X)

By gtn

lan, st 2 L By, g+l (X)

""‘4-1!
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+B—MX(""‘“V’,L_‘"“H (X) 4 X' me 0t
2

By g0
X)) (58)
Therefore (55) becomes:
i¢u:=3(%)‘/’ éiZ, (59)
Where each of the twelve terms Zs is of the general form:
Zs=CX*|_2(X)e~* (60)

and Zs are listed explicitly in Table 2.
From potential energy operator (48):

Vedn,=AX"®,,~BX'®,,

2d
= (_N':,.i‘)‘/’ (AZu—BZu) (61)
Z,s _X(ﬂn.‘ﬂl)/l’ :,’::u: (X)e—x/t (62)
2, =X ot J_:::m (X)e-* 63)

The fourteen terms generated by &, &, ¢ are given by:
oY S 2,+42,-B2,)  64)

i}edi,._, N’

Table 2. Kinetic Energy Operator Terms

- Bp g3
ZsEe X/IX n & Z;

W z--gx |7 w
SR I
(3) 7z - e
(4) z - Lx ﬁ::ﬂm
(5) zi = —ﬂT’"X‘ l;::“(X)
(6) Z - -oX' Z::;(X)
(1) z - —ﬂT’"X , 2::”(10
(8) zZi = '92“X ’_';::;(X)
(9) z = ﬂz"‘x ’_2:::(X)
w zu- -3x [ 00w
a z,- ﬂ;‘x s_z::‘ X)
12 Z.- X z:::m
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C. Matrix Element Evaluation and Recursion formulas.
The Hamiltonian matrix elements are defined by equation

(40)
=f¢::,1§re b, ,dr

Dropping the subscripts g and e where unambiguous, the
Morse wavefunctions are given by:

&= (sz_l;:‘)_é_X‘l/za :‘l“ (X)e"‘/’ (65)
0, - Bty L L, e 66)
From (50), dr=lX “ldX
ag

Table 3. Hamiltonian Matrix Elements (Morse potentials)

Hi,= (;dN) 27 oLy M=X8c+8,) /15 -X

S E "

1 ‘% fM 2:” X) ﬁm (X)dX
2 E';’ fo-l o) g:“(X)dX
P fu |G g;“(m
i fux [ 4 o0 |5

5 —% fM gj“ X) g:ﬂ(x)dx
6 _Ez— fMX g;: X) g:“(X)dX
7 —E%— fM Lﬂjﬂ g:“(x)dx
8 ﬂﬁu fM zjﬂ X) g:“(X)dX
9 L;ﬂf fM gj: X) giﬂ(x)dx
10 -%1 [ux g x) g:“ X)dx
1 Ezﬂ’ [ Zi, X) g:“ ax
12 E fo gu ) Z:H(X)dx
R
e Juxees [_z:”(x) Z:H(X)dX
8) vl (25)"' B—éf,’:)., E:‘“'-z’wc

b) ve< y,:A:(Zg:)w B= (g:)h E:—a’;’w,
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which implies that
f ®,(r) He o, (r)dr=—% X" ¢, (X)He &, (X)dX ©7)

Thus the matrix elements, H;; are given by:
-2,
Wi Nj)'#

where the terms F¥/ and I*# are given in Table 3.
In Table 3, IV is of the form:

= fore s, 0Lk, ®ax 69

which can be evaluated using Schroedinger’s® paper

H, = I S (68)

I =p! (ng+ks)! (g +ky) ! Skif:s 3 Ve A
(00 () (e (70)

Equation (68) can be written as:

14

=2 Fo' J¢' G 71)

1

Table 4. Evaluation of Matrix Elements

B,=k-2i-1 B,=k-2j-1

S P n, ks n, k% Fy’
1 k-i-j-1 k-2j-1 j k-2i-1 i —%
2 k-i-j-2 k-2j-1 j k-2i-1 i (k-2j-1)

2
3* k-i-j-1  k-2j  j-1 k2i-1 i E
E
4

4 k-i-j k-2j-1 j  k-2i-1
. L ... _E
5 kil ke2icl o ke2icl i - (k-24-1)
6% k-i-j k-2i -1 k-2i-1 _—f-
7 k-i-j-1 k-2j-1 j  k-2i-1 i T(k -2j-1)
8  k-irjz k2-1 G k2in1 i T (k-2)-1) (k-2)-3)
9% k-i-j-1  k-2j j-1 k-2i-1 i 5 ®-2i-1)
10 k-i-j k2j -1 k-2i-1 i '%
11*  k-i-j-1 k-2j  j-1 k-2i-1 i ?(k-z,-l)

12** k-i-j k-2j+1 j-2 k-2i-1 i E
13 k-i-j-2+2t k-2j-1 j k-2i-1 1 A
14 k-i-j-2+t k-2j-1 j k-2i-1 i -B

] Fl ¥ Jl J Gi = =0 if ]<1 ik F;.J'J?J’Gg.1=0

E, A, B are defined previously.

if j<2.
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Table 5. Recursion Relationships for all Diagonal Elements

;1 (k-2i-
It T G 0
o - (kilzli-l)
Jot =Ji* (k-2i)
Jit #=2) =Ji' (k-2i+2) k-2i+1) (k-2i)
Jia (t=3) =J} k-2i+4) k-2i+3) k-2i4+2) k-2i+1) k-2i)
nfe=3) =Jy' k-2i+1) (k-2i)

Table 6. Recursion Relationships for all off-diagonal Elements

. RN
Jor = Gt (k-1) (k-2)-1)] (i=Q except I,;;=0)
((k-1) (k-2) = ) F
s . IR
J;_J= [l 1! (k-Zl-l) (k‘zl‘l)] ; (i> 0)
((k-j=1) = (h=j-i)) ( (k-i-1) — (k-j) ) F
= (k-i-j-1)

o =J k-i-j)

I (e =2) =Jt (k-i-j+2) (k-i-j+1) (k-i-j)
Ji (4 =3) =Ji (k-i-j+4) (k-i-j+3) — (k-i-j)
S @=3) =077 (k-i-j+1) (k-i-j)
where
[ Zd

ST N F P etk L) !

skgk s ns -ng —p -
Gl = ,%o )ns-l-ns-l-k +kst+ 1 (:s °) (:s?r) (-2-1)

The relevant values of p, n,, k,, ., k!, and F/ are given as func-
tions of 7 and j for each integral in Table 4.

Consideration of Table 3 reveals that I, I, I, I, and I},
must be zero if j<1. I, must be zero if 7<2. This can be shown
to be true by the use of equation (15)":

de d® .
sLa ) =2y [e’—y,,<y" e™))
Clearly .Lt=0 when b>a. This is the case in [, I, I, I,, and
I,; when j<I and I;, when j<2.
The following recursion relationships of the Ji/ terms were

calculated.

SV =y = d =0y =0y =0 =G (t=1) (T2-a)

Ji=Ji’ (72-b)
Vi=del =0 =0 =T =1 =J0 (1=2) (72-¢)

where the superscripts 4, j designate all values of 7 and 720
unless otherwise designated. The calculated recursion for-
mulas for all diagonal elements except as designated are listed
in Table 5 and off-diagonal elements in Table 6. Once the

Bull. Korcan Chem. Soc., Vol. 7, No. 1, 1986 11

matrix elements are calculated by using these recursion rela-
tionships, they are placed into a column-packed upper
triangular matrix to be diagonalized. The diagonalization then
yields both the eigenvectors and the eigenvalues.

Conclusion

We have developed kinetic and potential operator for the
Morse wavefunctions when the ground states frequencies and
dissociation energies differ from those of excited states fre-
quencies and dissociation energies. Also, we developed recur-
sion formulas for vibrational matrix elements of Morse
wavefunctions.

Examination of the literature revealed that there were no
closed form evaluations of overlap integrals of Morse poten-
tial wavefunctions. However, molecules with relatively low
dissociation energies are not approximated well by any of the
harmonic and anharmonic potentials. We still need to more
study for the refinements of some equations. From our results,
the overlap integrals and spectral intensities of absorbance,
fluorescence, Raman and CARS can be evaluated using Morse
wavefunctions.

Appendix A. Important integrals for Morse Warefunctions.
(ve >vg; De*Dt)

) [82.600.de=<0lo>— 5 Coa<0lm>
=C 4, <0j0>+C, <0|1> +C o, <O2>+ -+
(b) f¢f.e¢¢..d:=<0|i>=§C,..<m|i>
=Cou<0}i>+Cy <1iD>+Coy <2[i >+
(c) f¢:.e¢|..df=<vll>=§C,,.<m]1>
=Coo<0[1>+C 0, <1 1> +Cpe <2 1>+
)f¢?..¢o.,d,=<1|v>=,§c.,.<1|m>
=Cu<110>+Cy, <1 1> +C, <1[2> +--
)f¢vt.e¢u..dr=<v|0>=§Cu.<m|o>
=C49<0|0> +C oy <10> +Cn<2[0> +--
©) [03.e6s.de=<0|2>= % Con<ml2>
=C<0]2>+C oy <1[2> +Cpy <2{2> +--
) [62. b0 dem<200>= 5 Coa<2lm>
=Cpe<2|0>+Cpn <211>+C,, <2]2>+ -

Appendix B. Important integrals for Morse Wavefunctions.
(ve< Vei D8+Dl)

) [8%.e00.ede= <0lo> =5 Cu<t]o>

=Co<0[0>+ Co <1|0>+Co, <2| 0> +---
)f¢.‘.=¢t..dr=<0|i>=§c,.<0|z>

=C14<0|0>+ C,,<0]1>+C,,<0]2>+--
c) f‘/l:.¢¢|.xdr=<v|1>=Z"C"<v|t>

=C1<0|0>+Cyy <v|1>+C,y<0]2>+
)f¢f..¢.,.edf=<1|v>=§c,,<1|v>

=C,e<0lo>+ C1<1|o>+C,; <2[v > +---
&) [9hepr.ddem <ol0>=F Cor<olt >

=Cpe<0]|0>+ Coy<v|1>4Cey <p|2>+-
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Lead tolerance of Pt/AlL,Q, catalysts was evaluated for CO oxidation depending on the properties of the alumina supports
and base metals added as promoter. Among the four different alumina supports, the support with a large macropore volume
{0.45cc/g) and 5% Ce has shown the best resistence to lead poisoning. Most of the base metals added to the Pt-catalysts
were found to be ineffective for improving lead resistence, but boron has shown an excellent lead tolerence, although it decreases

the initial catalytic activity.

Introduction

The major cause of catalyst deactivation in the automobile
systems using leaded gasoline is poisoning by lead. Although
the lead deactivation has recently been reviewed by several
authors,'* its detailed mechanism was not completely
understood. Some of the important aspects of lead poisoning
known by experiments are that among the single component
metal catalysts, Pt—-catalyst is most resistant to lead poison-
ing and a considerable fraction (10-30%) of the lead in the
fuel consumed is deposited on the catalyst as lead sulfate or
phosphate in major. Such a coating of lead salts on the catalyst
surface cause poor mass transfer properties® resulting in
decrease of its activity. Furthermore, experiments have shown
only a small changes in the macropore volume of the support
AL, while a remarkable decrease in the micropore volume
was observed.®

In this paper we present the results of the attempts to
prepare lead-tolerant catalysts for CO oxidation by im-
pregnating platinum into modified Y-ALQ; supports with dif-

ferent properties and by promoting the Pt—catalyst using
various base-metals.

Experimental

Preparation of Pt-catalysts supported on Y-Al,O,.

Pt-impregnated catalysts were prepared using four dif-
ferent kinds of y-Al,O, pellets of 2-8mm in diameter obtain-
ed from Rhone-Poulenc. Their characterestic properties are
shown in Table 1.

In order to load platinum an aqueous solution of H,PtCl,-
6H,0 with pH adjusted to 2.5+ 0.5 using HCI solution was
impregnated on the alumina supports. An exact amount of the
Pt-solution containing 0.2% Pt of the alumina support was
taken into a round-bottom flask together with the dried
alumina pellets and then evaporated to dryness in a rotary
evaporator at 85°C. The catalyst was dried at 150°C in oven
and then calcined for 4 hours at 550°C. The catalyst was then
reduced under hydrogen atmosphere for 2 hours at 550°C
before use.



