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Chromenes (2H-1-benzopyrane derivatives) have been
widely employed as important intermediates in the synthesis
of many natural products and medicinal agents.1 Thus,
various synthetic methods for the formation of these
compounds have been reported.1,2 Among them synthesis
from salicylaldehydes is most common.2 The reaction of
activated vinyl compounds and salicylaldehydes gave the
chromenes in good to moderate yields. Most frequently used
base in the reaction is DABCO2a-d and potassium carbon-
ate.2e-f Activated vinyls involve acrolein, acrylate esters,
acrylonitrile and alkyl vinyl ketones. However, the reaction
of cycloalkenones and salicylaldehyde, which could produce
xanthene derivatives, has not been reported until now. 

Initially, we examined the reaction of salicylaldehyde (1a)
and 2-cyclohexen-1-one (2a) with DABCO or K2CO3.2

However, desired xanthene derivative 3a was obtained in
low yield.3 As previously reported the corresponding
chromene derivatives were obtained in moderate yields in
the reaction with other activated vinyl compounds except 2-
cyclohexen-1-one and 2-cyclopenten-1-one. As an example,
the corresponding chromene derivative was obtained without
any problem in the reaction of 1a and methyl vinyl ketone in
60% yield (aq. CHCl3, DABCO, 7 days).2a Thus, we ex-
amined various reaction conditions for the formation of
xanthene derivatives 3 from 2-cyclohexen-1-one and finally
found that the use of DMAP in aqueous THF suffice the
formation of the desired compounds in reasonable yields.4 

As shown in Scheme 1, the reaction of salicylaldehydes 1
and 2-cyclohexen-1-one (2a) in aqueous THF in the
presence of DMAP (0.2-1.2 equiv.) at room temperature
gave 2,3,4,4a-tetrahydroxanthen-1-ones 3a-e in 39-53%

yields. By using 2-cyclopenten-1-one (2b) 3,3a-dihydro-2H-
cyclopenta[b]chromen-1-ones 4a-c were synthesized in 50-
58% yields. The results are summarized in Table 1. The
reaction conditions can be applied to other activated vinyls.
As an example, the corresponding chromene derivative, 1-
(2H-chromen-3-yl)ethanone, was obtained in the reaction of
1a and methyl vinyl ketone with DMAP in 75% yield (rt, 3
days, aq. THF). The result showed that the use of DMAP is
superior to the use of DABCO (vide supra).

Synthesis of 2,3,4,9-tetrahydroxanthen-1-one (5a) from
cyclohexane-1,3-dione and o-hydroxybenzyl alcohol has
been reported (Figure 1).5 However, synthesis of 2,3,4,4a-
tetrahydroxanthen-1-ones 3 and 3,3a-dihydro-2H-cyclo-
penta[b]chromen-1-ones 4 has not been reported yet.6 

Scheme 1

Table 1. Synthesis of 2,3,4, 4a-tetrahydroxanthen-1-ones 3a-e and
3,3a-dihydro-2H-cyclopenta[b]chromen-1-ones 4a-c

Entry
Salicyl-

aldehydes 1
Cyclo-

alkenones 2
Conditions Products (%)a

aMp (oC) was written in parenthesis. bDecomposition.
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The reaction mechanism could be proposed as follows as
shown in Scheme 1. DMAP catalyzed Baylis-Hillman
reaction7 and subsequent intramolecular Michael addition
followed by dehydration gave desired 3 and 4. Under the
same reaction conditions, the reaction of 1a and 4,4-
dimethyl-2-cyclohexen-1-one (2c) did not proceed at all
presumably due to the unfavorable zwitterion formation7

between DMAP and 4,4-dimethyl-2-cyclohexen-1-one by
the steric hindrance of gem-dimethyl group. 

Experimental procedure is very simple and straight-
forward. As shown in Scheme 1, a stirred mixture of 1 and 2
(1.0 equiv.) in aq. THF in the presence of DMAP (0.2 equiv.)
was maintained at room temperature for the time given in
Table 1. Usual workup and column chromatographic purifi-
cation (hexane/ether, 5 : 1) gave analytically pure products.8

As a conclusion, we disclosed a facile synthesis of novel
2,3,4,4a-tetrahydroxanthen-1-ones and 3,3a-dihydro-2H-
cyclopenta[b]chromen-1-ones from the reaction of salicyl-
aldehydes and 2-cyclohexen-1-one and 2-cyclopenten-1-one
for the first time in reasonable yields. Further studies on the
transformation of these compounds towards phenolic com-
pounds or 2,3,4,9-tetrahydroxanthen-1-ones are currently
underway.
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