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Communications to the Editor

Catalytic Reactions of cis-But-2- en-1,4-diol with Iridium Complexes:
Formation of trans-Crotonaldehyde
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In the presence of appropriate catalytic systems, un-
saturated alcohols undergo various reactions, such as dehy-
drogenation,' dehydration,? cyclization,® isomerization,* hy-
drogenolysis,® disproportionation,® and decarbonylation.’
Most catalytic systems are effective for a certain reaction of
a substrate,!™® while some metal complexes catalyze several
reactions simultaneously.®’ During the investigation for the
catalytic activities of iridium and rhodium complexes, we
found that some iridium(D* and rhodium(I)®** complexes
catalyze some reactions of unsaturated alcohols such as
isomerization (double bond migration),® dehydrogenation,
and hydrogenolysis.*' In this paper, we wish to report
unusual consecutive catalytic reactions (dehydrogenation,
hydrogenolysis and c¢is-frans isomerization) of
cis-bhut-2-en-1,4-diol (1) to give #rans-crotonaldehyde (2) in
the presence of either Ir(ClO,)(CO)PPh;), (3) or
Ir(H)CIO XCOXPPh,), (4) under nitrogen (equation 1).

CIS-HOCHZCH=CHCHZOH —_— trans—CHBCH=CHCH0 + HZO (1)

1 2

Figures la and 1b show the catalytic formation of 2 reac-
tions of 1 with 3 and 4, respectively. It is noticed in both
Figures 1a and 1b that cis-CH,CH = CHCHO (5) is produced
and then isomerized to the final product, 2. Since it has been
already known ‘that at room temperature under nitrogen,
complex 3 catalyzes dehydrogenation of unsaturated
alcohols to give unsaturated aldehydes and 4 which then
catalyzes the hydrogenolysis of unsaturated alcohols to pro-
duce unsaturated hydrocarbons,*1? it is conceivable that the
intermediate 5 seen in Figure la is the hydrogenolysis
product of ¢is-HOCH,CH =CHCHO (6) formed in the de-
hydrogenation of 1 by 3. Accordingly, the following reac-
tion steps are readily suggested for the formation of 2. One
may consider complex 4 (but not 3) being the actual catalyst

Ir(C104)(CO](PPh3)2 (3)

cls—HOCHZCH=CHCH20H
- Ir(H)2(C104](CO](PPh3]2 (a)

1
¢ 15-HOCH, CH=CHCHO 4, cis-CHCH=CHCHO —2—
-3, -H0
6 2 5
—— trans-CH_CH=CHCHO @
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for the isomerization of 5 to 2 since 4 is known to be the ac-
tual catalyst for the isomerization of unsaturated alcohols to
saturated aldehydes even when 3 is initially used as the cata-
lyst.™ In separate experiments, however, we found that 4
does not catalyze the isomerization of 5 to 2.

Reactions of 1 with 4 are also explained by the reaction
steps listed in equation 2 although they are not in the same
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Figure 1. Catalytic reaction of cis-But-2-en-1,4-diol (1) (0.2
mmol) with (a) Ir(CIO)CONPPh3)5 (3) (0.02 mmol) and (b)
Ir(H)ACI0(COXPPhy), (4) (0.02 mmol) in CDCly (0.4 m) and
CD30D (0.1 m!) Under Nitrogen at 45°C. —m-m—,
cis=-HOCH3CH = CHCH,0OH (1); —4&-a—, ¢is-CH;CH.=CHCHO
(8); — 2 -0—, frans-CH3CH = CHCHO (2).

order as in equation 2. Hydrogenolysis of 1 would apparently
occur first to produce 3 and cis~CH,CH=CHCH,0H (7)
when complex 4 is used as the catalyst. Then dehydrogena-
tion of 7 is followed to give 4 and 5 (seen in Figure 1b) which
is finally isomerized to 2 by 3 (equation 3).

4
1 ——————  cis-CH CH=CHCH,OH _3_, 5
3 2
-3, -H,0 -4
2 7
3
_— 2 3)

Formation of trans-crotonaldehyde (2) seems somewhat
slower with 4 than with, 3, which may be understood in
terms of relative amounts of 3 available for the last step
{5—>2) present in the reaction mixture. Complex 3 is required
consequtively for both of the dehydrogenation (7—>5) and
isomerization (5—2) in equation 3 while complex 3 is con-
sumed in every other reaction of dehydrogenation (1~ 6) and
isomerization (5— 2) in equation 2.
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Experiment. Product (cis-CH,CH = CHCHO) and trans-
CH,CH = CHCHO) analysis were carried out by comparing
I NMR signals with those of authentic samples.
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While examining the method for the esterification of car-
boxylic acids under essentially neutral conditions using con-
densing agents,! it has been found that S.S-bis(4,6-dimeth-
yl-2-pyrimidiny}) dithiocarbonate (DPDC)? is cleanly con-
verted into bis(4,6-dimethyl-2-pyrimidinyl) sulfide in reflux-
ing toluene.

Reaction of phenylacetic acid with equimolar amounts of
benzyl alcohol and DPDC in refluxing acetonitrile for 5 h
gave benzyl phenylacetate in 41% yield together with a
significant amount of the byproduct. Based on elemental an-
alysis, as well as mass, IR and 'HNMR spectra, it was
reasonable to assign the byproduct into bis(4,6-dimeth-
yl-2-pyrimidinyl) sulfide. Furthermore, its melting point
was in accord with that of the reported compound.?

/(KN g N’JE\ toluene /(I\N NZ |
N)\S/C\S)\N reflux N)\S/I\N

Among the solvents tested in this study. toluene was
found to be the most effective. The reaction was complete
within 4 h in refluxing toluene, whereas the reaction required
24 h for completion in refluxing acetonitrile. Tetrahydro-
furan and dichloromethane were totally ineffective and the
addition of 4-dimethylaminopyridine did not effect the pre-
sent reaction. Thus, S,S-bis(2-pyrimidinyl and 2-pyridinyl)
dithiocarbonates were cleanly converted into bis(2-pyrimi-

Table 1. Preparation of Bis(2-pyrimidiny! and 2-pyridinyl) Sul-
fides®
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aReacted in refluxing toluene.

Time, h

o 2]

dinyl and 2-pyridinyl) sulfides in 96% and 70% yield, respec-
tively in refluxing toluene. The experimental results are
shown in Table 1. However, this type of reaction could not
be applied to di-2-pyridyl carbona_lte4 and bis(4,6-dimeth-
yl-2-mercaptopyrimidinyl) oxalate .’ Di-2-pyridyl carbonate
was completely decomposed to 2-hydroxypyridine in reflux-
ing toluene for 20 h, whereas bis(4,6-dimethyl-2-mercapto
pyrimidinyl) oxalate was thermally inert. Although several
methods for the synthesis of bis(2-pyrimidiny! and



