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Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal compo-
nent-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting
point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each
compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in
the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the
best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s
as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the
prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models
are 48.18 and 12.77 ºC, respectively. Comparison of the results obtained by the models reveals superiority of
the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = 40.7 ºC). The
improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations
with the principal components. 
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Introduction

Melting point is a fundamental physical property of
organic compounds, which has found wide use in chemical
identification, as a criterion of purity and for the calculation
of other important physicochemical properties such as vapor
pressure and aqueous solubility.1,2 The solubility of a
compound in water is strongly correlated with its melting
point. An estimate of the water-solubility of a compound
before it is synthesized, or available in sufficient purity for
analytical measurements, would be most useful.3 Adequate
aqueous solubility is necessary for a compound to be trans-
ported to the active site within an organism. As noted above,
melting point affects solubility, and solubility controls
toxicity in that, if a compound is only poorly soluble, its
concentration in the aqueous environment may be too low
for it to exert a toxic effect.4,5 Thus, it would be helpful to be
able to estimate the melting point of a compound from its
chemical structure.6,7 Prediction methods for melting point,
mainly can be categorized as property-property relationship
(PPR), group contribution, and quantitative structure-pro-
perty relationship (QSPR).8,9 Comprehensive reviews of the
subject reveal that many studies involved hydrocarbons and
homologous compounds.10-12 This is because of the diffi-
culty of melting point prediction for various organic com-
pounds, since the numerous factors that control it are not
easy to quantify. 

The prediction of physicochemical and biological proper-
ties/ activities of organic molecules are the main objective of
quantitative structure-property/activity relationships (QSPRs/
QSARs). The QSPR/QSAR models now correlate chemical

structure to a wide variety of physical, chemical, biological
(including biomedical, toxicological, ecotoxicological) and
technological properties.13-17 QSPR/QSAR models are
obtained on the basis of the correlation between the
experimental values of the property/activity and descriptors
reflecting the molecular structure of the compounds. To
obtain a significant correlation, it is crucial that appropriate
descriptors be employed. A wide variety of molecular
descriptors has been reported for using in QSPR/QSAR
models.18 However, as the number of descriptors (variables)
increases, the model becomes complicated, and its inter-
pretation is difficult if many variables are used in modeling.
Therefore, the application of these techniques usually
requires variable selection for building well-fitted models. A
better predictive model can be obtained by ortogonalization
of the variables by means of principal component analysis
(PCA).19,20 The principal component analysis was used to
compress the descriptor groups into principal components
(PC’s). In order to reduce the dimensionality of the
independent variable space, a limited number of PC’s are
used.21 Hence, selecting the significant and informative PC’s
is the main problem in all of the PCA-based calibration
methods.22-25 Different methods have been addressed to
select the significant PC’s for calibration purposes. The
simplest and most common one is a top-down variable
selection where the PC’s are ranked in the order of
decreasing eigenvalues and the PC’s with highest eigenvalue
is considered as the most significant one and, subsequently,
the PC’s are introduced into the calibration model. However,
the magnitude of an eigenvalue is not necessarily a measure
of its significance for the calibration.25 In the other method,
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which is called correlation ranking, the PC’s are ranked by
their correlation coefficient with the property and selected
by the procedure discussed for eigenvalue ranking.22,23

Better results are often achieved by this method. Recently,
genetic algorithm (GA) has been applied for the selection of
the most relevant PC’s instead of the older methods. Com-
parison of the results obtained using GA principal compo-
nent selection with the two above-mentioned methods shows
that GA gives a better result and close to the correlation
ranking.26-28 GA is a stochastic method to solve optimization
problems applying evolution hypothesis of Darwin and
different genetic functions, i.e., cross-over and mutation.29,30

Genetic algorithm is robust, global and generally more
straightforward to apply in situations where there is little or
no a priori knowledge about the process to be controlled.29

Artificial neural networks (ANNs) have become popular
in QSPR/QSAR models due to their success where complex
non-linear relationships exist amongst data.31,32 An ANN is
formed from artificial neuron, connected with coefficients
(weights), which constitute the neural structure and are
organized in layers. The layers of neurons between the input
and output layers are called hidden layers. Neural networks
do not need explicit formulation of the mathematical or
physical relationships of the handled problem. These give
ANNs an advantage over traditional fitting methods for
some chemical applications. For these reasons in recent years,
ANNs have been applied to a wide variety of chemical pro-
blems.33-42 

Very recently, QSPR models have been applied for pre-
diction of the melting point of 323 set of drug-like com-
pounds.43 Ability of these models for prediction of the
melting point is poor (for example, root-mean square error
of the models is approximately 40.7 ºC). In order to predict
accurately melting point of the same compounds, in the
present work, principal component-genetic algorithm-multi-
parameter linear regression (PC-GA-MLR) and principal
component-genetic algorithm-artificial neural network (PC-
GA-ANN) models were employed to generate QSPR
models between the principal components and melting point
of the compounds and the results were compared with each
other, the previous work and the experimental values. 

Data and Methodology

Data set and theoretical descriptors. Melting points
were taken from the recently published paper.43 The data are
mostly for the compounds that are solid at room temperature
but also include some liquids and gaseous compounds. The
melting points are spread between −118 and 345 ºC. The z-
matrices (molecular models) were constructed with Hyper-
Chem 7.0 and molecular structures were optimized using
AM1 algorithm.44 In order to calculate the theoretical de-
scriptors, Dragon package version 2.1 was used.45 For this
propose the output of the HyperChem software for each
compound fed into the Dragon program and the descriptors
were calculated. As a result, a total of 1481 theoretical

descriptors were calculated for each compound in data sets
(323 compounds). 

Data pretreatment. The theoretical descriptors were
reduced by the following procedure: 1) descriptors that are
constant have been eliminated (292 descriptors). 2) in addi-
tion, to decrease the redundancy existing in the descriptors
data matrix, the correlation of descriptors with each other
and with melting point of the molecules are examined, and
collinear descriptors (R > 0.9) are detected. Those of the
descriptors which have the pair wise correlation coefficient
above 0.9 and having the lower correlation with melting
point values are removed from the data matrix (758 descrip-
tors). 3) before statistical analysis, the descriptors are scaled
to zero mean and unit variance (autoscaling procedure). The
data matrix (431 descriptors) is subjected to principal com-
ponent analysis using Matlab software package.46 Multipara-
meter linear regression was obtained using spss software.47

Genetic algorithm (GA). To select the most relevant
principal components, evolution of population was simu-
lated.48-52 Each individual of the population defined by a
chromosome of binary values represented a subset of princi-
pal components. The number of genes at each chromosome
was equal to the number of principal components. The
population of the first generation was selected randomly. A
gene took a value of 1 if its corresponding principal com-
ponent was included in the subset; otherwise, it took a value
of zero. The number of genes with a value of 1 was kept
relatively low to have a small subset of principal compo-
nents,52 that is, the probability of generating 0 for a gene was
set greater (at least 60%) than the value of 1. The operators
used here were crossover and mutation. The probability of
the application of these operators was varied linearly with
generation renewal (0-0.1% for mutation and 60-90% for
crossover). The population size was varied between 50 and
250 for different GA runs. For a typical run, the evolution of
the generation was stopped when 90% of the generations
took the same fitness. The GA program was written in
Matlab 6.5.53 

Artificial neural network (ANN). A feed forward arti-
ficial neural network with a back-propagation of error
algorithm was used to process the non-linear relationship
between the selected principal components and the melting
point. The number of input nodes in the ANN was equal to
the number of PC’s. The ANN models confined to a single
hidden layer, because the network with more than one
hidden layer would be harder to train. A three-layer network
with a sigmoid transfer function was designed. The initial
weights were randomly selected between 0 and 1. Optimi-
zation of the weights and biases was carried out according to
the resilient back-propagation algorithm. The data set was
randomly divided into three groups: a training set, a valida-
tion set and a prediction set consisting of 195, 64 and 64
molecules, respectively. The training and validation sets
were used for the model generation and the prediction set
was used for evaluation of the generated model. The perfor-
mances of training, validation and prediction of models are
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evaluated by the mean percentage deviation (MPD) and root
mean square error (RMSE), which are defined as follows:

MPD = (1)

RMSE = (2)

where Pi
exp and Pi

cal are experimental and calculated values
of melting point with the models and N denote the number
of data points. Individual percent deviation (IPD) is defined
as follows:

IPD = (3)

The processing of the data was carried using Matlab 6.5.46

The neural networks were implemented using Neural Net-
work Toolbox Ver. 4.0 for Matlab.54 

Results and Discussion

Principal component analysis. After the elimination of
the constant and one of the collinear ones, 431 descriptors
remained from 1481 theoretical descriptors calculated for
the compounds. The results of application of PCA on the
descriptors data matrix were shown that 99.9% of the
variances in the descriptors data matrix are explained by 234
first PC’s. Therefore, we focused our analysis on these PC’s,
and the reminders, which are noisy factors, were not consi-
dered. 

Principal component-genetic algorithm-multiparameter
linear regression. Obtaining the number of significant
principal components is the main problem in the PCA-based
methods. The first 234 principal components (PC’s) were
found to explain more than 99.9% of variances in the
original data matrix. As noted previously, not all of the PC’s
is informative for QSAR/QSPR modeling.25-27 Then, we
used GA for the selection of the most relevant PC’s instead
of the older methods. The selected PC’s are PC1, PC2, PC3,
PC4, PC5, PC6, PC7, PC9, PC15, PC32, PC33, PC36,
PC37, PC39 and PC86. As can be seen, the selected princi-
pal components are not based on their eigenvalue. For
example, PC9 and PC15 are selected and PC8 is not
considered in the model. This is due to the fact the infor-
mation contents of some extracted PC’s may not be in the
same direction of the activity data. Multiparameter linear
correlation of melting point values for 195 compounds in
training set was obtained using the fifteen principal compo-
nents. The calculated values of melting point for the com-
pounds in training, validation and prediction sets using the
PC-GA-MLR model have been plotted versus the experi-
mental values of it (Figure 1).

Principal component-genetic algorithm-artificial neural
network. To process the non-linear relationships exists bet-

ween the melting point and the PC’s, the ANN modeling
method combined with PCA for dimension reduction and
GA for feature selection was employed. A principal compo-
nent-genetic algorithm-artificial neural network (PC-GA-
ANN) model, which combines the PC’s with ANN, is
another PC-based calibration technique for non-linear model-
ing between the PC’s and dependent variables.25-28 The input
vectors were the set of PC’s, which were selected by GA,
and therefore, the number of nodes in the input layer was
dependent on the number of selected PC’s. In the PC-GA-
MLR model it is assumed that the PC’s are independent of
each other and truly additive relevant to the property under
study. ANNs are particularly well-suited for QSAR/QSPR
models because of their ability to extract non-linear infor-
mation present in the data matrix. For this reason the next
step in this work was generation of the ANN model. There
are no rigorous theoretical principles for choosing the proper
network topology; so different structures were tested in
order to obtain the optimal hidden neurons and training
cycles.34-42 Before training the network, the number of nodes
in the hidden layer was optimized. In order to optimize the
number of nodes in the hidden layer, several training
sessions were conducted with different numbers of hidden
nodes (from one to thirty two). The root mean square error
of training (RMSET) and validation (RMSEV) sets were
obtained at various iterations for different number of neurons
at the hidden layer and the minimum value of RMSEV was
recorded as the optimum value. Plot of RMSET and
RMSEV versus the number of nodes in the hidden layer has
been shown in Figure 2. It is clear that the twenty nine nodes
in hidden layer is the optimum value. 

This network consists of fifteen inputs (including PC1,
PC2, PC3, PC4, PC5, PC6, PC7, PC9, PC15, PC32, PC33,
PC36, PC37, PC39 and PC86), the same PC’s in the PC-GA-
MLR model, and one output for melting point. Then an
ANN with architecture 15-29-1 was generated. It is note-
worthy that training of the network was stopped when the
RMSEV started to increases i.e. when overtraining begins.
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Figure 1. Plot of calculated values of the melting point using the
PC-GA-MLR model versus the experimental values of it for
training, validation and prediction sets. 
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The overtraining causes the ANN to loose its prediction
power.31 Therefore, during training of the network, it is de-
sirable that iterations are stopped when overtraining begins.
To control the overtraining of the network during the
training procedure, the values of RMSET and RMSEV were
calculated and recorded to monitor the extent of the learning
in various iterations. Results showed that overfitting did not
see in the optimum architecture (Figure 3). 

The generated ANN was then trained using the training
and validation sets for the optimization of the weights and
biases. For the evaluation of the predictive power of the
generated ANN, an optimized network was applied for
prediction of the melting point values in the prediction set,
which were not used in the modeling procedure (Table 1).
The calculated values of melting point for the compounds in
training, validation and prediction sets using the ANN model
have been plotted versus the experimental values of it in
Figure 4. 

It is clear that the calculated values of melting point are in
good agreement with those of the experimental values. The

correlation equation for all of the calculated values of melt-
ing point (Mp) from the ANN model and the experimental
values is as follows: 

Mp(cal) = 0.969 Mp(exp) + 4.381 (4)

(R = 0.9850; MPD = 9.326; RMSE = 12.623; F = 10445.99)

Similarly, correlation of Mp(cal) versus Mp(exp) values in
the prediction set gives equation (5): 

Mp(cal) = 0.972 Mp(exp) + 5.623 (5)

(R = 0.9843; MPD = 9.119; RMSE = 12.767; F =1930.99)

Plot of the residual for melting point values in the training,
validation and prediction sets versus the experimental values
of it has been illustrated in Figure 5. It is clear that the
propagation of errors in both sides of zero is random. Then
there is not systematic error in the model. 

As a result, it was found that properly selected and trained
neural network could fairly represent dependence of melting
point for the drug-like compounds on the PC’s. Then the

Figure 2. Plot of RMSE for training and validation sets versus the
number of nodes in hidden layer.

Figure 3. Plot of RMSE for training and validation sets versus the
number of iterations. 

Figure 4. Plot of calculated values of the melting point using the
PC-GA-ANN model versus the experimental values of it for
training, validation and prediction sets.

Figure 5. Plot of the residual for calculated values of the melting
point using the PC-GA-ANN model versus the experimental values
of it. 



Melting Point for Drug-like Compounds  Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4     837

Table 1. Continued

No. Compound Experimental
Cal 

(PC-GA-ANN)
Res.

51 Meprobamate 104 104.1 −0.1
52 Gentamicin 105 104.9 0.1
53 Physotigmine 105.5 88.2 17.3
54 Bupivacaine 107 89.2 17.8
55 Amidopyrine 108 136.4 −28.4
56 Acecarbromal 109 105.4 3.6
57 Celiprolol 110 107.8 2.2
58 Tolnaftate 111 121.1 −10.1
59 Amphotalide 113 119.7 −6.7
60 Valnoctamide 113.5 111.1 2.4
61 Ifenprodil 114 115.5 −1.5
62 Bamipine 115 104.8 10.2
63 Alverine 116 128.1 −12.1
64 Pericyazine 116 116.1 −0.1
65 Atropine 118 114.8 3.2
66 Morphazinamide 118.5 91.8 26.7
67 Chlophedianol 120 125.4 −5.4
68 Pridinol 120 99.3 20.7
69 Terbutaline 120.5 130.8 −10.3
70 Capobenic acid 121 124.6 −3.6
71 Propizepine 122 150.0 −28.0
72 Nadolol 124 117.9 6.1
73 Bamethan 125 114.0 11.0
74 Nimodipine 125 126.3 −1.3
75 Mecloqualone 126 153.3 −27.3
76 Febantel 129 128.3 0.7
77 Clonidine 130 136.1 −6.1
78 Xylometazoline 131 124.8 6.2
79 Diazepam 133 127.3 5.7
80 Thozalinone 133 133.5 −0.5
81 Aminorex 136 145.7 −9.7
82 Praziquantel 136 128.2 7.8
83 Simvastatin 136.5 142.4 −5.9
84 Butalbital 138 138.8 −0.8
85 Phenazopyridine 139 147.9 −8.9
86 Erythrocentaurin 140 161.0 −21.0
87 Carbaryl 142 144.1 −2.1
88 Fexofenadine 142 141.0 1.0
89 Letosteine 142 149.8 −7.8
90 Acetylsalicylic acid 142.4 172.9 −30.5
91 Tetrazepam 144 126.4 17.6
92 Felodipin 145 140.9 4.1
93 Metoclopramide 146.5 153.7 −7.2
94 Atenolol 147 152.7 −5.7
95 clotrimazole 147 144.6 2.4
96 Salacetamide 148 157.1 −9.1
97 Morazone 149 146.7 2.3
98 Astemizole 149.1 162.3 −13.2
99 Acemetacin 150 134.2 15.8
100 Mafenide 151 140.9 10.1
101 Haloperidol 151.5 148.2 3.3
102 Glymidine 152 152.4 −0.4
103 Azatadine 153 148.1 4.9
104 Testosterone 153 180.9 −27.9

Table 1. Experimental and calculated values of melting point for
the drug-like compounds in  training, validation and prediction sets
using PC-GA-MLR and PC-GA-ANN models along with the
residual for the calculated values by PC-GA-ANN model

No. Compound Experimental
Cal 

(PC-GA-ANN)
Res.

Training
1 Halothane −118.0 −118.3 0.3
2 Diethyl ether −116.3 −120.2 3.9
3 Ethylene oxide −111.3 −112.0 0.7
4 Chloroform −63.7 −62.3 −1.4
5 Methoxyflurane −35.0 −35.9 0.9
6 Benzyl alcohol −15.3 −14.9 −0.4
7 Nicotinyl alcohol −7.7 5.1 −12.8
8 Amphetamine 11.3 31.8 −20.5
9 Glyceryl trinitrate 13.5 10.5 3.0
10 Propofol 19.0 2.2 16.8
11 Nikethamide 25.0 32.1 −7.1
12 Ephedrine 36.0 24.7 11.3
13 Methyl nicotinate 39.0 36.7 2.3
14 Trimipramine 45.0 55.0 −10.0
15 Phencarbamide 48.0 39.7 8.3
16 Hyoscine 59.0 43.4 15.6
17 Prometazine 60.0 57.5 2.5
18 Gemfibrozil 61.0 92.0 −31.0
19 Procaine 61.0 65.5 −4.5
20 Dichloralphenazone 65.5 67.1 −1.6
21 Etomidate 67.0 80.3 −13.3
22 Lignocaine 67.5 79.9 −12.4
23 Penbutolol 68.0 78.5 −10.5
24 Betaxolol 71.0 86.4 −15.4
25 Mephenesin 71.5 57.3 14.2
26 Phenadoxone 75.0 71.1 3.9
27 Ibuprofen 76.0 110.7 −34.7
28 Mebutamate 77.0 71.4 5.6
29 Oxprenolol 77.5 56.5 21.0
30 Methadone 78.0 61.1 16.9
31 Allylestrenol 80.0 80.0 0.0
32 Bamifylline 80.0 106.1 −26.1
33 Nabumetone 80.0 67.0 13.0
34 Anileridine 83.0 83.3 −0.3
35 Fentanyl 83.0 67.2 15.8
36 Amphetaminil 85.0 84.2 0.8
37 Methdilazine 87.0 91.1 −4.1
38 Noxythiolin 88.0 90.1 −2.1
39 Vinylbital 90.0 83.4 6.6
40 Phenindamine 91.0 92.9 −1.9
41 Carisoprodol 92.0 87.6 4.4
42 Beclamide 92.5 99.1 −6.6
43 Perphenazine 94.0 110.8 −16.8
44 Thenalidine 95.0 75.2 19.8
45 Tropicamide 96.5 96.6 −0.1
46 Aldicarb 99.0 97.6 1.4
47 Acetylpheneturide 100.0 96.2 3.8
48 Phenocoll 100.5 117.7 −17.2
49 Piperidione 102.0 106.1 −4.1
50 Isoxsuprine 102.5 94.8 7.7
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Table 1. Continued

No. Compound Experimental
Cal 

(PC-GA-ANN)
Res.

158 Glipizide 205.0 218.5 −13.5
159 Oxazepam 205.5 179.5 26.0
160 Lonidamine 207.0 206.8 0.2
161 Amodiaquine 208.0 206.3 1.7
162 Indoramin 208.0 217.2 −9.2
163 Vigabatrin 209.0 201.8 7.2
164 Methetion 210.0 198.8 11.2
165 Pimozide 216.0 211.9 4.1
166 Oxycodone 219.0 208.3 10.7
167 Hydroxyprogesterone 222.5 213.5 9.0
168 Hydrocortisone 223.0 235.9 −12.9
169 Apazone 228.0 212.5 15.5
170 Acitretin 229.0 215.0 14.0
171 Nalidixic acid 229.5 219.1 10.4
172 Salinazid 232.5 235.6 −3.1
173 Diaveridine 233.0 227.8 5.2
174 Phenopyrazone 233.0 217.5 15.5
175 Pyrimethamine 233.5 230.3 3.2
176 Nicotinic acid 235.5 215.7 19.8
177 Caffiene 238.0 213.3 24.7
178 Prednisolone 240.5 231.7 8.8
179 Cromolyn 241.0 238.6 2.4
180 Clometacin 242.0 225.9 16.1
181 Domperidone 242.5 249.3 −6.8
182 Metolazone 252.0 235.4 16.6
183 Finasteride 253.0 245.9 7.1
184 Nifenazone 253.0 234.4 18.6
185 Pemoline 259.0 215.5 43.5
186 Dexamethasone 260.0 262.7 −2.7
187 Ciprofloxacin 266.0 259.9 6.1
188 Hydroflumethiazide 270.5 262.8 7.7
189 Acefylline 271 278.1 −7.1
190 Dantrolene 279.5 283.8 −4.3
191 Fluorouracil 283.0 281.2 1.8
192 Prazosin 285.0 274.5 10.5
193 Enoxolone 296.0 284.7 11.3
194 Diazoxide 330.5 334.5 −4.0
195 Orotic acid 345.0 347.6 −2.6

Validation
196 Trichlorethylene −86.0 −85.7 −0.3
197 Methyl salicylate −8.0 −7.5 −0.5
198 Benzyl benzoate 18.0 31.4 −13.4
199 Prilocaine 37.0 63.9 −26.9
200 Ethopropazine 53.0 39.9 13.1
201 Isosorbide 61.0 66.4 −5.4
202 Fluanisone 67.5 70.6 −3.1
203 Disulfiram 71.0 67.8 3.2
204 Ethylesterol 77.0 69.4 7.6
205 Moxaverine 78.0 81.0 −3.0
206 Pentifylline 82.0 70.8 11.2
207 Piprozolin 86.0 83.4 2.6
208 Alclofenac 91.0 120.5 −29.5
209 Ketoprofen 94.0 90.4 3.6

Table 1. Continued

No. Compound Experimental
Cal 

(PC-GA-ANN)
Res.

105 Taurolidine 154 152.8 1.2
106 Colchicane 156 160.7 −4.7
107 moricizine 156 157.3 −1.3
108 Omeprazole 156 150.3 5.7
109 Urapidil 156 137.3 18.7
110 Salicylic acid 157 163.0 −6.0
111 Succisulfone 157 152.0 5.0
112 Lidoflazine 159 153.8 5.2
113 Azacyclonol 160 158.1 1.9
114 Benzydamine 160 164.0 −4.0
115 Didanosine 160 156.1 3.9
116 Ketorolac 160.5 178.2 −17.7
117 Oxaprozin 160.5 161.7 −1.2
118 Aldosterone 164 176.3 −12.3
119 Pizotifen 164 169.8 −5.8
120 Tolrestat 164 175.0 −11.0
121 Lorazepam 166 184.1 −18.1
122 Sulfamethoxazole 167 161.7 5.3
123 Chlortetracycline 168.5 168.3 0.2
124 Glyburide 169 170.0 −1.0
125 Benperidol 170 161.2 8.8
126 Metopimazine 170 160.5 9.5
127 Tolazamide 170 183.7 −13.7
128 Isoniazid 172 188.2 −16.2
129 Hydralazine 172.5 166.3 6.2
130 Nifedipine 173 179.0 −6.0
131 Lovastatin 174.5 159.5 15.0
132 Amisometradine 175 167.6 7.4
133 Acifran 176 179.3 −3.3
134 Melphalan 177 170.2 6.8
135 Propallylonal 177 179.7 −2.7
136 Sulpiride 178 184.0 −6.0
137 Zomepirac 178 177.0 1.0
138 Nomifensine 179 165.8 13.2
139 Sulthiame 180 174.8 5.2
140 Acepromazine 182.5 174.7 7.8
141 Amphenidone 182.5 173.2 9.3
142 Sulfacetamide 183 179.4 3.6
143 Bezafibrate 186 186.8 −0.8
144 Acetohexamide 189 179.6 9.4
145 Pyrazinamide 189 200.8 −11.8
146 Clomipramine 189.5 184.5 5.0
147 Carbamazepine 190 181.0 9.0
148 Embutramide 190.5 181.4 9.1
149 Apronal 194 197.3 −3.3
150 Clebopride 194 141.2 52.8
151 Methotrexate 195 196.4 −1.4
152 Aceglutamide 197 189.8 7.2
153 Aceneocoumarol 197 208.6 −11.6
154 Furonazide 199 209.9 −10.9
155 Polythiazide 202.5 205.2 −2.7
156 Ampicillin 203 237.0 −34.0
157 Picrotoxin 203 199.1 3.9
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Table 1. Continued

No. Compound Experimental
Cal 

(PC-GA-ANN)
Res.

266 Chlorambucil 66 67.2 −1.2
267 Ranitidine 69 90.9 −21.9
268 Propoxyphene 75 70.3 4.7
269 Etisazol 78 74.1 3.9
270 Guaiphenesin 80 67.5 12.5
271 Metrifonate 83 84.0 −1.0
272 Benzocaine 90 82.6 7.4
273 Maprotiline 92 132.4 −40.4
274 Tamoxifen 96 102.2 −6.2
275 Metaproterenol 100 106.0 −6.0
276 Difenidol 103.5 118.1 −14.6
277 Pipobroman 106 107.3 −1.3
278 Acetylcysteine 109.5 98.4 11.1
279 Cyproheptad ine 113 108.4 4.6
280 Flupirtine 115 142.8 −27.8
281 Moperone 118 110.0 8.0
282 Temazepam 120 127.7 −7.7
283 Benzoic acid 122.4 99.0 23.4
284 Lofexidine 126 142.9 −16.9
285 Bitoscanate 131 138.2 −7.2
286 Phenacetin 134.5 130.0 4.5
287 Sulfinpyrazone 136.5 156.9 −20.4
288 Aprobarbitone 141 141.2 −0.2
289 Proglumide 142 149.9 −7.9
290 Ketoconazole 146 133.5 12.5
291 Cloricromen 147.5 139.3 8.2
292 Felbamate 151 140.0 11.0
293 Naproxen 152 157.5 −5.5
294 Amobarbital 156 176.3 −20.3
295 Phenallymal 156 158.4 −2.4
296 Warfarin 157 148.4 8.6
297 Bucetin 160 172.4 −12.4
298 Famotidine 163 166.9 −3.9
299 Tyramine 164 169.3 −5.3
300 Acetaminophen 169 176.5 −7.5
301 Risperdone 170 183.1 −13.1
302 Tetracycline 172.5 174.3 −1.8
303 Amoxapine 175.5 182.6 −7.1
304 Oxymetholone 178 202.9 −24.9
305 Dextromoramide 180 182.5 −2.5
306 Clozapine 183 188.3 −5.3
307 Glisoxepid 189 187.6 1.4
308 Spiperone 190 187.4 2.6
309 Hymecromone 194 179.2 14.8
310 Piroxicam 198 212.6 −14.6
311 Caroxazone 203 158.5 44.5
312 Baclofen 207 214.7 −7.7
313 Buprenorphine 209 213.5 −4.5
314 Griseofulvin 219 217.0 2.0
315 Thioacetazone 227.5 220.7 6.8
316 Oxibendazole 230 224.4 5.6
317 Ubenimex 233 231.6 1.4
318 Lotrifen 238 232.8 5.2
319 Zolimidine 242 244.0 −2.0
320 Flumequine 253 252.0 1.0
321 Reserpine 264.5 264.3 0.2
322 Hydrochlorthiazide 274 272.4 1.6
323 Acedapsone 289 268.8 20.2

Table 1. Continued

No. Compound Experimental
Cal 

(PC-GA-ANN)
Res.

210 Cocaine 98.0 109.3 −11.3
211 Hycanthone 100.6 124.4 −23.8
212 Benzoyl peroxide 105.0 103.7 1.3
213 Metaraminol 107.5 92.5 15.0
214 Flurbiprofen 110.0 99.1 10.9
215 Acetanilide 114.0 119.3 −5.3
216 Dibenzepin 116.0 109.3 6.7
217 Antazoline 120.0 105.2 14.8
218 Acebutolol 121.0 134.4 −13.4
219 Benzarone 124.3 150.9 −26.6
220 Tolbutamide 128.5 113.8 14.7
221 Benzylmorphine 132.0 135.8 −3.8
222 Mephenytoin 136.0 154.0 −18.0
223 Alizapride 139.0 157.2 −18.2
224 Cimetidine 142.0 133.5 8.5
225 Carbutamide 144.0 145.6 −1.6
226 Pyrinoline 146.5 153.9 −7.4
227 Thialbarbital 148.0 148.2 −0.2
228 Salbutamol 151.0 143.7 7.3
229 Bufexamac 153.0 138.0 15.0
230 Ketobemidone 156.0 167.4 −11.4
231 Dihydromorphine 157.0 178.3 −21.3
232 Metronidazole 159.0 148.2 10.8
233 Methallatal 160.0 158.4 1.6
234 Halazepam 164.0 160.9 3.1
235 Clobazam 167.0 159.3 7.7
236 Sumatriptan 169.0 161.2 7.8
237 Hydroquinine 172.0 181.5 −9.5
238 Heptabarbital 174.0 158.1 15.9
239 Mephobarbital 176.0 181.6 −5.6
240 Ximoprofen 178.0 183.7 −5.7
241 Androstanolone 181.0 164.1 16.9
242 Zox azolamine 184.0 183.8 0.2
243 Verazide 189.0 186.0 3.0
244 Acediasulfone 194.0 210.4 −16.4
245 Probenecid 195.0 190.4 4.6
246 Alphadolone 200.0 192.0 8.0
247 Ursodiol 203.0 205.5 −2.5
248 Sotalol 207.0 209.4 −2.4
249 Acecainide 210.0 184.6 25.4
250 Propylthiouracil 219.0 218.1 0.9
251 Azapropazone 228.0 232.9 −4.9
252 Chlorazanil 233.0 247.6 −14.6
253 Sulfamerazine 234.0 243.9 −9.9
254 Amiloride 241.0 244.4 −3.4
255 Azathioprine 243.5 240.3 3.2
256 Morphine 255.0 234.7 20.3
257 Fosfosal 268.0 266.9 1.1
258 Moxestrol 280.0 241.8 38.2
259 Flucytosine 296.0 294.2 1.8

Prediction
260 Sevoflurane −116.0 −116.7 0.7
261 Tetrachloroethylene −22.3 −24.1 1.8
262 Paraldehyde 12.6 28.9 −16.3
263 Tranylcypromine 28.0 21.0 7.0
264 Ifosfamide 48.0 51.7 −3.7
265 Triprolidine 60.0 59.3 0.7
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optimized neural network could simulate the complicated
nonlinear relationship between melting point values and the
PC’s. The RMSE of 48.176 for the prediction set by the PC-
GA-MLR model should be compared with the value of
12.77 for the PC-GA-ANN model. As can be seen, ability of
the proposed model to predict the melting point is very
higher than the QSPR models proposed in recently publish-
ed paper (RMSE of 12.767 should be compared with 40.7
ºC). It can be seen that although parameters appearing in the
PC-GA-MLR model are used as inputs for the generated PC-
GA-ANN model, the statistics has shown a large improve-
ment. These improvements are due to the fact that melting
point of the compounds shows non-linear correlations with
the principal components. 

The melting point of a compound is governed by the
intermolecular hydrogen-bonding ability of the molecules,
the molecular packing in crystals (effects from molecular
shape, size, and symmetry), and other intermolecular inter-
actions such as charge transfer and dipole-dipole interactions
in the solid phase.6 The solubility of a compound can be
regarded as a partitioning of the compound between its
crystal lattice and the solvent. If the forces holding the
molecule in the crystal are high, then the solubility will be
low. For the same reason the melting point will be high,
since melting point is a measure of the energy required to
disrupt the crystal lattice. The molar aqueous solubility can
be calculated using melting point of compounds by the
general solubility equation.2 Then melting points affect
solubility, and solubility controls toxicity in that; if a com-
pound is only poorly soluble, its concentration in the aque-
ous environment may be too low for it to exert a toxic
effect.5 As a result prediction of melting point of the com-
pounds using the proposed non-linear model is a valuable
method in designing new drugs within a specified range of
melting point and solubility. 

Conclusions 

Quantitative-structure property relationships have been
applied for prediction of melting point for 323 drug-like
compounds by using the principal component-genetic
algorithm-multi parameter linear regression (PC-GA-MLR)
and principal component-genetic algorithm-artificial neural
network (PC-GA-ANN) methods. Comparison of the stati-
stical parameters obtained for training, validation and pre-
diction sets by the PC-GA-MLR and PC-GA-ANN models
demonstrate superiority of the PC-GA-ANN model over the
PC-GA-MLR model. Root-mean square error of 48.18 for
the prediction set by the PC-GA-MLR model should be
compared with the value of 12.77 ºC for the PC-GA-ANN
model. Since the improvement of the results obtained using
non-linear model (PC-GA-ANN) is considerable, it can be
concluded that the non-linear characteristics of the principal
components on melting point of the compounds is serious. 
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