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A blend polymeric system composed of poly(methyl methacrylate) (PMMA or PM) and polystyrene (PS) dissolved in
chlorofolm was rheologically studied. The viscosities 7;; of the blend system with various blending ratios y changing from
zero (pure PS solution) to unity (pure PMMA solution) were measured at 25 °C as a function of shear rates § by using a
Couette type viscometer. 7 at a given § decreased exponentially with ¥ reaching asymptotic constant value of 7, ; 7 at
a given y is greater at a smaller §. These results are explained by using Ree-Erying’s theory of viscosity, 7u=(x181/a1), +
(xofa/as)s; [sinh™! Sy(bl) 8)/B2(bN)S. The Gibbs activetion energy 4G,* (i=2 for non-Newtonian units) entering into the
intrinsic relaxation time fB; is represented by a linear combination 4G;¥(b)=xd4G*;pu+(1-x)4G%ps;the intrinsic shear
modulusfa;]? is also represented by [a;(bD] =xla;pml 1+ (1~x) [or;es] 7 and the fraction of area on a shear surface occupied
by the ith flow units x(b/) is similarly represented, i.e., x{bl)=yxx;pm+(1-Y)x;ps. By using these ideas the Ree-Eyring
equation was rewritten which explained the experimental results statisfactorily.

Introduction

Ree-Eyring’s equation for viscous flow was applied to
various systems. Polymeric solids and solutions,! suspension
systems,? metals and alloys® are well explained by the theory.
In this paper, we tested the applicability of the theory to a
emulsion system which is composed of polystyrene(PS) and
poly(methyl methacrylate) (PMMA or PM) in a cosolvent,
chloroform.

Most of polymer pairs are incompatible because of their
negligible entropy of mixing. And viscosity profiles of polymer
blends in melt do not obey and simple “law of additivity”
in terms of blending ratios, but have maxima or minima in
the curves of viscosity vs. blending ratio.* The viscosity
profiles of two phase polymer-melt systems vary not only
by shear rates and temperatures but also by molecular
weights of polymer samples and blending methods®
significantly. And morphology of the flow system has also
strong effects on the viscosity.’ But in ternary systems which
contain a cosolvent, blending methods and morphology
factors are eliminatable. Krause reviewed the compatibility
of ternary systems.® Our system of polystyrene/poly(methyl
methacrylate) in chloroform is a incompatible one.

Theory

1. The Ree-Eyring Equation of Viscosity. According to
the generalized theory of viscosity,! 7 can be expressed by Eq.
1,

x;8; sinh™!B;§

=2 aﬁ; B f (1
where x; is the fraction of area occupied on a shear surface
by the ith flow unit; § is shear rate; a;=(2424s/2kT); and
B;=Qk 2/ X!, the quantities (e)™' and f; being
proportional to the shear modulus and relaxation time of
the ith flow unit, respectively, A, ;, Az A3 are the molecular
parameters appearing in the Eyring theory of flow,” k' the
rate constant (jumping frequency) of a flow unit, and the
subscript 7 outside the parenthesese indicates that the indside

quantities belong to the ith flow unit.

Two types of flow units are assumed in this study, i.e.,
i=1 and 2. Generally 3, is very small, and the following
relation holds

o ia
i‘lfl_f_li — 1 if B §K1

B
__xb x,08; sinh™18,§
7 a * az B2 § @

i.e., the first type of flow units (i = 1) acts as a Newtonian type

whereas the second type acts as a non-Newtonian. In the

first type, the solvent flow units are also included.
Generally, §; is represented by the following equtiion:

.3i=1/<'7'21‘2k'> .

where the rate constant k;/ is substituted by the absolute
reaction rate constant.

2. Application of Ree-Eyring Equation to a Blend Polymer
Solution.

Let 7 be the viscosity of the blend polymer solution
which is composed of polystyrene (PS) and poly(methyl
methacrylate) (PMMA or PM) in chloroform. In accordance
with Eq. (2), 7, is expressed by the following equation:

x X, sinh~! B,(b1)$
(11{31 )bl+( ‘zf;z )bl ﬁz(flz)(é &
That is, the blend system is also composed of Newtonian
and non-Newtonian type flow units which are represented
by the subscripts 1 and 2, respectively. We consider first
the intrinsic relaxation time Bx(bl) of the blend system.

Intrinsic Relaxation Time B(bl) of the Non-Newtonian
Blend Flow Units. The 8,(b0) is given by an equation
similar to Eq. (3), i.e.,

s e

The activation free energy AG;(bl) of the blend system is

Nor= (




Studies of Incompatible Polymer-Blend Solutions

assumed to be given by the following equation.
AG5 (bl =y AGHu+ (1 =) 4G, (6)

where y is the blending ratio [y =0, pure polystyrene solution,
y=1, pure poly(methyl methacrylate) solution], 4Gz, and
G represent the activation free energies in solutions of
pure PMMA and pure PS in chloroform, respectively. The
relaxation times fBspyy and fBgps of the two pure solution
systems, are given by similar equations as Eq. (3), ie.,

'BZPM:I/[(ZLIL _2’;;_T_ exp <_ ARG;f )]PM ™
and
o=t (1), B o0 (CRE ) ®

If the approximation, (2/4;)spym = (3/A1)ops is made for
simplicity, Egs. (7) and (8) yield, respectively,

Barn=Cexp-A%p1_ ©
and
£
Baps=Cexp A%ets (10)

where C=h/2kT(2/21)2
We introduce Eq. (6) into (5), then the following results:

[x4Giu+ (1—x) 4G5 ]

Ba=(bD)=C exp BT

(11)

where the approximation, A/2kT (1/2,)4, 5=~ C, was made.

By comparing Egs. (9), (10)and (11), one obtains,
BabD)= By, BEis' (12)

By using Eq. (12), the B.(b]) values at any y can be calculated

in terms Bopy and Bips, the latter quantitis being experi-
mentally obtainable from flow curves for pure PMMA and

PS solutions
Parameter(x,Jas)y; for a Blend System. In this parameter,

1/a, is the intrinsic shear modulus of flow unit 2, and
[ao(bD]71 is also expressed by a linear combination as follows:
Faa(BD] 1 =ylasem] 1+ (1 —x) [agps ]2 (13)
The area fraction x,(b/) occupied by flow wunits 2 in the
blend system is similarly expressed by
Xo(bD)=yXopm+ (1 —%) Xps (14)
By combining Egs. (13) and (14), one obtains:

X2 ) 42 L
(Gr), merttore as)

Non-Newtonian Viscosity Term 5,(bl). The term of non—
Newtonian viscosity, 7.(b/), in Eq. (4) is expressed by using
Egs. (12) and (15) as

3 -1 A% -7 &

b= (@2 + by -+ O izt x SO Bem B8 (16

Bien ﬁzph 8
From Eq. (16), one notes that y—0, 7,(b) becomes 7gps,
ie.,

) - .
Nops=C ﬁzps% (17)
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From Egq. (2), the 7.,p5 is experssed by

¥l ) sinh™1 Sops § (18)
@y /PS Bops

By comparing Egs. (17) and (18), one obtains

c= (xz/a3)ps (193)
thus ¢ is obtained from (x,/@,) which is available from a
flow curve of a pure PS solution.
On the other side, at y==1, one obtaines from Eq. (16)
the following relation:

2ps— (

_— .
(b)) =nopy=(a+b-+ C)ﬁszM

2PM S
which yields the relation,
a+b+te= (ﬁ-\)
&y /PM
ie.,
a+b=(ﬁ_> _(_xi) (19b)
Qs /PM da /PS

Newtonian Viscosity Term. In the Newtonian viscosity
term x8;/a; in Eq. (2), the §; factor is unseparable from
x1/a; while B, is separanle from x,/a, in the non-Newtonian
term. One may, however, assume that an equation similar
to Eq. (11) will be applied to 8;in a blend system. Thus,

B1(b)=C" exp y[ 4Gy —AGys 1/ RT

the difference quantity in the bracket will be negative since
the relation, AGa< 4GS, generally holds, ‘.e.,

By(BD=C" exp [— XJ%TG_U] (20)

The quantity (x;/a;);; may also be expressed by an equation
similar to Eq. (15), i.e.
(vlaDy=a' y*+b'y+c 2D
By combining Eqgs. (20) and (21), one obtains for the Newtonian
term the following equation:
jﬁl__) = (a'y by !_;ﬁﬂ_]
( Bu) =y by e “HICL 22)

where the constant C’ in Eq. (20) is absorbed into the
coefficients a’, b’ and ¢’. If y—0, Eq. (22) becomes

()

thus, ¢’ is obtainable from a flow curve of a pure PS solution.
For the determination of a and b in Eq. (16) and a’ and ¥’
in Eq. (22), reference is made to a later part.

Esperimental

1. Sample Preparation

Polystyrene. Commercially available general-purpose
polystyrene (PS) (Han Nam Chemical Co.) is used without
further treatment.

Poly(methyl methacrylate). Poly(methyl methacrylate)
(PMMA or PM) was polymerized in benzene solution
using benzoylperoxide as an initiator.

2. Moecular Weight Measurment
A Cannon Fenske capillary viscometer was used to obtain
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the intrinsic viscosity. The molecular weights of sample PS
and PMMA polymers were 87,000 and 38,000, respectively.
3. Measurments of Viscosities

The solutes of 36 g were added in 90 m/ of chloroform
(Wako, EP) irrespective of the blending ratios. A Coutte
type rotational viscometer was used, and by an X-Y recorder,
the curves of shear stress f were obtained at 25 °C. Viscosities
of eleven solutions of blend samples of PS and PMMA
changing in the blending ratios from zero (pure PS solution)
to unity (pure PMMA solution) were measured at various
shear rates.

Results

Flow Curves and Viscosities. The profile of flow curve of §
vs. T for a blend sample was typically non-Newtonian,
i.e., it is not a straight line, but bends upward. The viscosity
y is given by f/§, and corresponds to the reciprocal of the
slope of the curve at a point. Viscosities 7;; of the samples
of various blending ratios y were measured at three different
shear rates, and are plotted againt y in Figure 1. We see the
decrease in the viscosities with increasing shear rates. This
is also a characteristic of non-Newtonian flow. With
increasing y, the viscosity decreases at a given §, i.e., pure
PMMA solution is lower than pure PS solution in viscosity.

We also note that 7 reaches a nearly constant value above
30 wt% PMMA content for each §.

Determination of Flow Parameters. Because of the nature
of the inverse hyperbolic sine function, (sinh™18,38)/8,%
approaches zero as 1/3 approaches zero. We can obtain the
values of x,8;/a; in Eq.(2) by plotting 7 vs.1/$ on the intercept
of the curve at (1/§)=0. We denote this quantity by z.(=
x181/@;) which is a Newtonian type viscosity (i=1).

7. (POISE)

30
S (sec”)
—o— 903
—0— 645
129 ~

+

0 05 |
(PS) (PMMA

X {Blending Ratio)

Figure 1. Viscosity 7, of blend solutions at three different
shear rates § vs. blending ratio y. ¥y=0 for pure PS solution,
y=1 for pure PMMA solution.
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Table 1: Values of Parameters in the Ree-Eyring Theory

1 %’f‘i( =1.) ———“'Zfzh far X 103 _3&2:_\ 1073
0 11.8 19.6 9.1 2.15
0.1 8.1 208 7.22 2.88
0.2 7.0 13.2 6.91 191
0.3 6.0 5.6 4.99 1.12
0.4 6.9 45 5.38 0.84
05 5.8 3.6 4.83 0.75
06 .. 55 3.7 4.09 0.91
0.7 6.0 2.5 3.33 0.75
08 6.0 29 3.35 0.85
0.9 5.1 23 2.82 0.81
1.0 4.7 2.7 2.51 1.08

¢ Blending ratio =0 for pure PS solution, ¥=1 for pure PMMA
solution. %In the determination of the parameters, an extrapolation
process is involved. (See the text.) The unit of the parameter is
poise. ¢ Because of a small fluctuation of the value due to §, an
average was taken. The unit is sec. d. The unit is dyne/cm2,

The parameters X,/a, and B; in the non-Newtonian type
are obtained by applying the Ree-Eyring equation to the
flow curve. The principle is as follows: (i) the factor (sinh™!
B28)/8.5 approaches to unity as § —0; (if) according to
Eq. (2); 77,7 (x2f2/ an)(sinh™! B58)/8, $;(iii) thus (xo8z/a)
is obtained by polotting %-7,, vs. § and by extrapolating the
curve to §=0, ie., the intercept on the (y-7.) axis yields
X982/ as; (iv) then 3, is obtained by the following way: by
using the value of x,8,/a, just obtained, the value of
(-0 M[xafaf ;] is calculated which equals (sinh™! §.8)/
Ba8, ie.,

(7-7.) _ sinh™1 5,8

(xo02/ ) B Je
the B, satisfying the above relation is casily obtained since
all the equatities appearing in the relation are known except
for 8.

All the parametric values obtained by the above method
of analysis are tabulated in Table 1 where the parameters
are represented as a function of y. In Table 1, the data of
pure PS solution (y=0) and of pure PMMA solution (y=1)
are also found.

Relaxation Time (By(b]). From Eq. (12), we obtain,

In Bo(bD =1y In Bopp+ (1—2) In Baps
=y BB yn g, 24)
.BZPS

In Figure 2, the values of In 8y(bl) are plotted against y,
the data are taken from Table 1. The straight line in Figure
2 is the plot of Eq. (24), i.e., the slope of the straight line is
In[Bspum/Bepsl, and the intercept at y=0 is In Byps. One
notes from Figure 2, that the agreement between theory and
experiment is very good.

Parameter (x,] ). In Figure 3, the parameters (xo/ay)y
are plotted against y, the data are from Table 1. The full
curve was calculated from Eq. (15) which seems to fit the
experimental points satisfactorily. The values of constants,
a,b and c in Eq. (15) were obatained by using Egs. (19a) and
(19b), where a=2.70 X 103 was chosen. Thus, b was calculated
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Figure 2. In 8,(b/) vs. y. The B2(b!) is the intrinsic relaxation
time of a non-Newtcnian flow unit in blend solution. The
straight line is represented by Eq. (24). x=0 for pure PS
solution, y=1 for pure PMMA solution.

' X2 -3
('?z-)blx 10 (dyne/cr%)

o Exp

0 0.5 1 x
(PS) (PMMA)
Figure 3. Parameter (xp/ay)y; vs. 3. The (xp/as)y is the

parameter x,/a@, for a non—Newtonian unit in blend solution,
the full curve is represented by Eq. (15), where the values of
a, b and ¢ are 2.70, —3.77 and 2.15 in units of 103 dyne/cm?2,
respectively. y=0 for pure PS solution, x="1 for pure PMMA
solution.

from Eq. (19b) by using the values of (xp/az)py (=1.08X105)
and (xp/aa)ps (=2.15x10%), je.,b=-3.77x 103, According
to Eq. (19a), ¢={(xs/az)ps=2.15%103. The values of
(x2/a2)pm and (xof/as)ps were taken from Table 1.

Newtonian Term (x16,/a1)y;. This term is also expressed
as 7,(bl)as previously mentioned. In Figure4 are shown In %,
(bly vs. y, the data being taken from Table 1. The full curve
is obtained from Eq. (22), where the value of [ |d4G%|]/RT
was found to be 0.4,

From Eq. (22), one notes that if y —0, (x;f/a)y
becomes (x;5;/a;)ps(=11.8) which equals ¢’ as previously
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Figure 4. 7 (bl) vs. y. The y(b/) represents (x381/a1)ss
r.e., the Newtonian viscosity for blend solution. The full curve
is represented by Eqg. (22), where the values of &, b’ ¢" and
|64Gy|/RT are 8.3, —13.1, 11.8 and 0.4, respectively.

mentioned. [See Eq.(23)]. One also notes thatif y—1, (x,8,/
ay)s; becomes (x;8;/e)pu which equals (@' +b'+¢')
exp [—|54G*|/RT), ie.,

@+b +¢)= ('%L>pM exp (_:MTATGL>
or
a=(2h) exp (1AL () o)

where a’ is found to be 8.3. By substituting the known values
of @’ and [ |64G%|]/RT, and by using the values of (x; 8,/ a@1)pu
and (x;8,/a;)ps in Table 1, b" was calculated as —13.1 from
Eq. (25).

Calculation of Viscosities for Blend Systems and
Discnssions

1. Curves of 7 vs. .

By substuting the known values of a’, b°, (xi81/a1)ps
and [|64Gy|]/RT to the Newtonian term (x18;/a;) 5 in Eq.
(22), and by introducing, a,b, (x;as)ps, By and Bapg to the
non-Newtonian term 7(b]) in Eq. (16), we obtain 7=
[7..(bD) +72(b])] as follows:

Mo =(8.3y2—13.13-+11.8) exp (—0.4%)

3 2 r  py sinh™ Bl B350 §
+10%(2.70%2 ~3.77% +2.15) Bheu Bl P25 2 (26)
Bhen B5' 8
where Bpy and fops are 9.11x1073 and 2.51x 1073 sec,
respectively. By using Eq. (26),the viscosities 7;; were calculated
at various blending ratios y as a function shear rate §. The
results are shown in Figures 5a and 5b. The agreement between
theory and experiment is generally good except for the
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Figure 5a. Viscosity 5, for blend solution at various shear
rates § and blending ratios from ¥=0 to y=0.5. The full curves
are calculated from Eq. (26). The blending ratios are shown on
the curves. y=0 for pure PS solution, y=1 for pure PMMA
solution.

cases of y=0.3 and y=0.8.1t is regarded that the discrepancies
appeared at these y's may be due to some systematic
experimental errors,

2. Discussions

Flat Portion on a Curve of 7y, vs.8.1t is noticed that if y—0.7,
75 becomes nearly constant at low §. [See Figure. 5b.] This
phenomanon is explained as follows. Generrally, sinh™!
Y=Y if Y{{1.The term (sinh~1Y)/Y in Eq. (26) approaches
unity if Y==%5u S $¢<1. The latter relation is satisfied only
at y>0.7 and $<300sec™l. Thus, the curve of xy vs. §
shows the tendency to be flat at low shear rate (§<300 sec™!)
if ¥>>0.7. [See Figure. 5b and Egq. (26).]

Rheological Phenomena Shown in Figure 1. From Figure
1, one notes that (i) 7, decrease exponentially with ¥
approaching asymptotically to a constant valve of 7, at a
given §, (ii) 7, at a given y is higher at smaller §. These facts
are explained from Eq. (26) as shown below.

(a) First we consider the fact described in item (ii).
Generally

sinh™! ¥=In [Y+ (¥Y2+1)1]

where Y =8y §= P B+ S. [See Eq. (26).] Thus, the func-
tion, (sinh™! Y)/Y, decreases with increasing § since sinh™!
Y increase with In § wheresas the denominator Y increases
directly in proportion to $. By this reason, the curve of 7;; vs.
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Figure 5b. Viscosities g, for blend solution at various shear
rates § and blending ratios from y=0.6 to y=1. The full curves
are claculated from Eq. (26). The blending ratios are shown on
the cruves. y=0 for pure PS solution, =1 for pure PMMA
solution.

¢ locates higher at lower .

(b) Next, the fact described in item (i) will be considered.
Both Newtonian and non-Newtonian terms in Eq. (26),
includes the term Ay2+ By -+ C which decreases with y about
exponentially reaching a minimum at y~=0.7. See Figure 3.
[Note: the existence of a minimum at y=0.7 can be shown
by differentiating Eq. (15) with respect to y, and by
introducing the values of A(=2a)=2.70-10% and B(=b)=
—3.77-10%, The Newtonian term also has a minium at y=
0.78.1 After reaching the minimum,the function Ay2+4By-+-C
increases gradually with y. But the function of sinh™ 8%,
BLd § in Eq. (26) decreases with increasing y. Thus, the two
factors, Ay2+ By C and sinh™ i B¢ §, react in opposite
ways keeping 7, (bl) constant at 3 >0.7. The Newtonian
term %.(b0) in Eq. (26) includes the exponential factor exp
(—0.4y). Because of this factor, the increase in the factor
Ay?+ By + C with y after passing the minimum is compensated
keeping the 7.(b/) term about constant. Because of the
abovementioned behaviors of 7., (bl) and 7,(b]) terms, the
curve of 7, [=7.(b) +71:(bD] vs. y shows the features shown
in Figure 1.
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The Linear Free Energy Relationship in Cinnamonitrile Derivatives
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Chemical shift differences of vinyl protons of cis- and frans-cinnamonitrile derivatives are very well correlated with (oy, %),
op*, and (F, R) (r=0.9996-0.8946), much better correlation than the case of methyl cinnamates. para-Substituted and
trans—cinnamonitrile derivatives have larger resonance contribution than mera-substituted and cis-derivatives.

Introduction

In our previous paper!l, we reported the linear free energy
relationship (LFER) in methyl cinnamates studied by H-
NMR spectrometry. The chemical shift differences of a-vinyl
protons of trans— and cis-methyl cinnamates are well
correlated with Hammett substituent constant ¢, (oy, 0z%?
and Swain and Lupton constant® (F& R) (r=0.999-0.879).
The resonance contribution is larger in frans- and para-
substituted cinnamates than in cis- and mera—substituted
cinnamates. One of the interesting observations is that the
correlation is much better in cis-cinnamates than trans-
cinnamates. Tt is suspected that the bulky alkoxycarbonyl
group (-COOR) may have something to do with this
phenomenon, For example, the bulky ester group will
diminish the resonance effect substantially in cis-cinnamates
by causing the nonplanarity of the compounds and the
inductive effect will play the dominant role in cis-Cinnamates
as observed.

Therefore, we applied the same methodology to cin-
namonitriles to test these kinds of effects. The linear and
much smaller cyano group in cinnamonitrile compared to
nonlinear, bulkier ester group in cinnamates will maintain
the coplanarity even in eis-cinnamonitrile derivatives in
contrast to cinnamates.

The chemical shift of a-vinyl protons of cinnamonitriles
is measured and correlated with LFER parameters such as
Hammett substituent constant (g), Brown and Okamoto
constant (s,%), and Swain and Lupton constant (F & R).
The same Hammett equation and its variations*~® used for
cinnamates as shown below are applied.

0Hg, « =po+0H, o
0H,, » =p101+tprOR+Ha0

(eq. 1)
(eq. 2)

oH, ., =fF+4+rR+H,, (eq. 3)
lp = (PR/PI)p (eq. 4)
Ay =l (eq. 5)
A ={orlODm (eq. 6)
Xw =l )n (eq. 7
an = (Xp)trans/ ('zp) cis (eq. 8)
Np’ = (Zp’) trans! (%'}c«': (eq. 9)
Now =) trans! A cis (eq. 10)
Ny’ =) trans! (A’ cis (eq. 11)

where F and R are the substituent constants corresponding
to the field and resonance contribution proposed by
Williamson and Norrington and f and r are their weighting
factors. 1,(2,) and 2,(2,"). so called the blending coeffi-
cients, represent the ratio of resonance and inductive (field)
contribution of para and meta substituents and N,(N ") and
N(N.') represent the ratio of A

Experimental

Materials. Cinnamonitrile derivatives were synthesized
from the corresponding cinnamic acids by the standard
method”8 as described below. Thionyl chloride was added
to cinnamic acid and the mixture was refluxed with stirring
for 5-8 hours. Excess thionyl chloride was removed by
evaporation and precooled ammonium hydroxide was
added dropwise to the residue and stirred with magnetic
bar for S hours at room temperature to get amide crystals.
The amide was filtered with suction, washed with distilled
water and dried in vacuo. The dry and finely powdered amide
and thionyl chloride mixture was placed in a round bottomed
flask and refluxed for 4-7 hours with stirring. The solvent
was evaporated off and methylene chloride was added to the
reaction mixture. The solution was washed with distilled
water, aqueous sodium bicarbonate, and with distilled water.



