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Canonical sampling method has been presented to generate the initial conditions for reactive flux studies of
organic reactions in water. Velocity Verlet version of Nosé-Hoover chain dynamics algorithm has been
employed to sample the initial conditions according to canonical distribution. The unstable normal mode of a
transition state has been introduced to define a dividing plane separating reactant and product regions in
reaction processes. This method has been implemented and tested for the case Diels-Alder reaction of methyl
vinyl ketone (MVK) and cyclopentadiene (CPD) in water, providing a reliable tool for further reactive flux
molecular dynamics studies in condensed media.
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Introduction

In order to carry out reactive flux (RF) calculations of
chemical reactions in condensed phase, initial conditions
should be generated by canonical distribution. Using the
velocity scaling method of Berendsen et al.,1 Otter and
Briels2 generated the initial conditions and carried out their
RF studies of some isomerization reactions. Jang and Voth3

proposed simple reversible molecular dynamics (MD)
algorithms based on Nosé-Hoover chain (NHC) dynamics
and successfully tested them for a model system of coupled
harmonic oscillators. These algorithms can easily be
extended to systems with a holonomic constraint, which is
required in the sampling procedure with a proper choice of a
dividing plane separating reactant and product regions. In
the recent work of Otter and Briels,2 the dividing plane was
chosen by introducing a normal mode with a negative
eigenvalue (i.e., unstable normal mode) of a transition state.
One of the advantages of this choice is that it is very closely
related to intrinsic reaction coordinate (IRC) and gives a
clear mathematical definition of the dividing plane, as was
already discussed in their paper. Thus following their
approach,2 we have chosen to use the unstable normal mode
of the transition state to define the RF plane as a holonomic
constraint in our MD algorithm. Subsequently the transition
state geometry and its Hessian matrix of a reactive system of
interest need to be calculated and can be obtained by state-of
art ab initio method with reasonable accuracy. Main purpose
of this paper is to provide a canonical sampling method for
the initial conditions for condensed phase RF studies, and
we have implemented the algorithm based on velocity Verlet
scheme (VV-1)3 to a Diels-Alder reaction of methyl vinyl
ketone (MVK) and cyclopentadiene (CPD) in water, which
will be a subject of future ab initio RF MD studies. 

Theory

In reactive flux calculations, a dynamic correction factor κ
to a transition state (TST) rate constant κTST can be calculated
by

, (1)

where κ is the true rate constant, ξ(tpl) is the reaction
coordinate at plateau times tpl, and θp is a step function, such
that θp is 1 only if ξ(tpl) is in the product region and 0
otherwise. The notations <�>+ and <�>− in Eq. (1) denote
averaging over a normalized flux weighted canonical
distribution function with positive and negative initial
reaction coordinate velocity, respectively. The normalized
flux weighted distribution function at Γ� (x, px) in Cartesian
coordinates is given by4

,

(2)

where  is a plane dividing the reactant and product
regions of a reactive system consisting of N atoms, and ξ (0)
and  are the reaction coordinate and velocity,
respectively, at the initial time t = 0. In this work, bond
length constraints have not been employed. Then the flux
weighted distribution in Eq. (2) can also be written 

.

(3)
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In Eq. (3), Zξ is defined as

, (4)

where mi is the mass of the i-th atom. The average value of
the step function θp[ξ(t)] in Eq. (2) sampled by the
distribution of Eq. (3) exactly reproduces that of Eq. (2), and
a proof goes as follows: 

Denoting the step function θp[ξ(t)] to be F(ξ, , t), the
average value of F with the distribution of Eq. (3) is 

.

(5)

Let's introduce generalized coordinates and their conju-
gate momentums (q1,�� q3N−1, ξ, ,�, , pξ). Then
using dpqdξdpξ = dpqdξd , the change of the inte-
gration variables dpqdξdpξ to dpqdξd  leads a partition of
the kinetic energy term, such that 

T = Tq + Tξ (6)

where Tq and Tξ are the individual kinetic terms depending
on pi

q(i = 1, �, 3N−1) and , respectively. In particular note
that Tξ = . (See Ref. 2 for more details) As a
consequence, Eq. (5) becomes 

  × (7)

Integrating Eq. (7) with respect to  and changing the
order of integration variable ' gives

× 

. (8)

Furthermore the flux averages in Eq. (5) can be expressed
in a more practical term:

, (9)

with

, (10)

, (11)

where  is the probability distribution in Γ generated
by MD simulations with the constraints of both ξ = 0 and 
= 0, and  is the conditional probability of the
reaction velocity  for a given value of x. [The superscripts
(+) and (−) represent the forward and backward reaction
velocities, respectively.] For the sampling of a negative , it
can easily be generated by using  without
resampling  and just reversing it. In a similar
manner to Otter and Briels's approach,2 the dividing plane
for the reactive flux calculations is chosen to satisfy the
following holonomic constraint: 

h(x1, �, x3N) = ξ = Q1 = 0,  (12)

where Q1 is a normal mode having a negative eigenvalue at
the transition state. In order to generate the initial conditions
according to  in Eq. (3), one can use canonical
MD algorithm with a holonomic constraint. Jang and Voth3

proposed several reversible MD algorithm based on Nosé-
Hoover chains to generate trajectories according to canonical
distributions. In this work the velocity Verlet algorithm (VV-
1) in Ref. 3 has been employed and briefly summarized in
the next section. For more details of the algorithm, readers
should refer to Ref. 3.

A. Velocity Verlet Algorithm with a Holonomic Con-
straint (VV-1). Let xi(δt), vi(δt), and ai(δt) be the position,
velocity, and acceleration of a system consisting of N atoms
at time step δt. The variables ηi, vηi, and aηi are the ones
corresponding to the i-th Nosé-Hoover chain associated with
the system. The VV-1 algorithm consists of three steps:

 Step 1:

vi(δt/2) = (13)

(14)

,
(15)

Step 2:

xi(δt) = xi(0) + δtvi(δt/2) (16)

(17)

, (18)

Step 3:
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,
(21)

where  and  at time t are defined as 

, (22)

. (23)

In presence of the holonomic constraint [Eq. (12)],
vi(δt/2), and xi(δt) are modified to give

, (24)

, (25)

where λ is a Lagrange multiplier, vi'(δt/2), and xi'(δt/2) are
the velocity and position variables, respectively, calculated
without the constraint at time δt/2. In general it is convenient
to express normal modes of the system {Qi} in temrs of 3N−
6 curvilinear internal coordinates {Sj}:

, (26)

where  are the elements of transformation matrix from
the internal coordinates {Sj} to the normal coordinates {Qi},
and {Se,j} are the internal coordinates at the transition state.
Then the reaction coordinate ξ can be written

. (27)

In fact in Ref. 2, a reaction coordinate was expressed in
terms of Cartesian displacement coordinates, which in turn
requires calculations of gradients of a rotation matrix. The
gradient calculations, however, can be avoided by use of Eq.
(27) at the expense of computing B-matrix, which can be
easily calculated by the s-vector method of Wilson et al.5

With Eq. (27), (0) in Eqs. (24) and (25) are calculated by 

, (28)

where Bi,j are the elements of the B-matrix. Since Q1 has
been expressed in the internal coordinates [Eq. (27)],
obtaining λ by a direct substitution of Eq. (25) into Eq. (12)
is not straightforward in this case. Thus we expand Si with
respect to xi' up to first order, which 

. (29)

Then substituting Eq. (29) into Eq. (12) and solving for λ
gives 

. (30)

An iteration procedure consisting of Eqs. (25), (29), and
(30) is carried out until {xi'}n become close to {xi'}n+1 within
a convergence limit. Using the converged values of {xi'}n, λ
is easily calculated and then used to determine the constraint
corrected values of vi(δt/2) in Eq. (24). In addition the
acceleration in the first Nosé-Hoover chain coupled to the i-
th degree of freedom of the system is also affected by the
constraint and obtained by using the modified equation:3 

, (31)

where gi is the fractional degree of freedom3 substracted in
the i-th direction and ω1(i) is the first Nosé mass associated
with the i-th degree of freedom (See the Ref. 3 for more
details). With the normal mode constraint in Eq. (12), gi

2 is
given by 

 (32)

Instead of associating NHCs to each of the i-th degree of
freedom as in Eq. (31), an alternative expression to Eq. (31)
can be obtained by coupling NHC to the whole system with
3N−1 degree of freedom (i.e., a reactive species with a
constraint), yielding a simpler expression for the accele-
ration at time δt/2: 

. (33)

Practically it is more efficient to have several NHCs
coupled to the 3N−1 degree of freedom and is straight-
forward to extend Eq. (33) to the case of multiple NHCs. In
the VV-l algorithm,3 the velocities at time δt also satisfy 

(34)

In a similar manner to Eq. (24), the velocities at time δt are
calculated by introducing a new Lagrange multiplier λ', such
that 
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Again substituting Eq. (35) into Eq. (34) results in a
expression for λ' 
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. (36)

With the λ' value in Eq. (36), Eq. (35) is completely
determined. Note that λ' is directly obtained without any
iterative scheme. 

B. Sampling of . The above MD algorithm generates the
initial conditions based on  in Eq. (10). Therefore
after the canonical equilibrium of  is reached, one
has to reassign only the value of , simply using  in
Eq. (11). The value of Zξ in Eq. (4) is calculated by
substituting ξ = Q1 into Eq. (4) and using Eq. (27): 

(37)

where Gj,k are the elements of the G-matrix,5 which is
defined tobe G ≡ B·M−1·BT. In general the G-matrix at an
instant position can be written 

G = G0 + G, (38)

where G0 is the matrix evaluated at the transition state
position and ∆G is the remaining term depending on
deviation from the transition state geometry. Thus Zξ can be
rewritten 

Zξ = [L−1·G0·(L−1)T]1,1 + L−1·∆G0·(L−1)T]1,1 
= 1 + Zx  (39)

The first term in Eq. (39) is 1, since LT·G0
−1·L = I by the

definition of L matrix.6 The value of Zξ begins to deviate
from 1, depending on the magnitude of ∆Zξ, as the
molecular complex moves away from the transition state.
This has also been pointed out by Otter and Briels,2 using the
Cartesian coordinate expression for Zξ. 

Often one can choose a simple bond distance as the
reaction coordinate (i.e., ξ = r). In this case, Zξ is a simply
diagonal component of the G-matrix corresponding to ξ = r,
Gξξ. Therefore, noting that Gξξ = mi

−1 + mj
−1, the expression

of the average reactive flux in Eq. (9) is simplified to 

. (40)

After (0) is sampled, it can be transformed into the
corresponding Cartesian velocities using the following
equation:2

vi = Mi
−1/2·f · li,1 , (41)

where li,1 is the 3-dimensional eigenvector transforming the
reaction coordinate into the mass weighted Cartesian
components of the i-th atom in a body fixed frame and Mi

−1/2

is the 3 × 3 diagonal matrix with the same elements of mi
−1/2.

The matrix li,1 in Eq. (41) is directly obtained by diagonaliz-

ing Hessian matrix in the mass weighted Cartesian coordi-
nates at the transition state, and f denotes a 3 × 3 rotation
matrix representing an instant body fixed frame without
overall rotation and translation. In order to find the rotation
matrix, the authors of Ref. 2 employed a numerical scheme
based on the Newton-Raphson procedure. In this work,
however, we have attempted to find such a matrix directly by
introducing an Eckart frame7,8 f = (f1, f2, f3), such that 

f = F · (FT · F)−1/2 (42)

F = (F1, F2, F3) (43)

Fα = ciαmi
1/2xi (α = 1, 2, 3), (44)

where ciα is one of the Cartesian components of the i-th atom
at the transition state specified in a body fixed frame and xi is
an instantaneous position vector of the i-th atom. Note that Fi

are the 3-dimensional column vectors. In particular, for a
planar molecule, only two vectors f1 and f2 are uniquely
determined by the orthonomalization of F1 and F2 and f3 is
obtained by f3 = f1 × f2. For a linear molecule, only f1 is
determined and the others are obtained by imposing the
orthogonality of the frame. This procedure is quite efficient
and easy to be implemented, since it requires only matrix
inversion and diagonalization of the 3 × 3 Gram matrix
(FT · F).8 Using the current configuration of the system, the
Eckart frame defined in Eqs. (42)-(44) is calculated once
every time the reaction velocity  is sampled. After the pure
Cartesian components of  are evaluated using Eq. (41),
they are added to the existing velocities obtained by the MD
runs described in the previous section to complete the
sampling of Eq. (3). We can also implement the above
algorithm forrm  to a different sampling scheme
developed by Carter et al.9 In their method, the dynamic
correction factor κ in Eq. (1) is written as 

, (45)

where <�>ξ,M denotes averaging over Pξ(x) · P(px|x), each
of which is defined in Eqs. (4) and (6), respectively, in Ref.
9. In this case, one can use only the configurational part
sampled by our  for (x) and then generate
momentums using , which are just Maxwellian
distributions in absence of the molecular constraints.

Implementation to Organic Reaction in Water

We have applied the above algorithm to generate the initial
conditions for reactive flux calculations of methyl vinyl
ketone (MVK) and cyclopentadiene (CPD) in water. The
intramolecular potential energy surface  for MVK
and CPD complex (or solute) is obtained by a local harmonic
approximation using the B3LYP/6-31+g* level of theory: 

, (46)
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where V0 is the energy at the transition state, Fi,j are the
harmonic force constants in the internal coordinates, and dSj

are the internal displacement coordinates with respect to the
transition state. Non-bonded interactions between the
complex and water molecules consist of Lennard-Jones (LJ)
and Coulomb interactions: 

, (47)

where εi,j and σi,j are the LJ parameters and qi are the partial
charges on i-th atom. The values of Cornell et al.10 are used
for the LJ type interactions. The partial charges of the
complex are obtained by using the restrained electrostatic
potential (RESP)11 fit at the same level of ab initio theory
and the SPC/F2 parameters12 are employed for the water
molecules. In this work the GAUSSIAN 94 quantum
chemistry program13 has been used for the entire B3LYP
calculations. At the B3LYP/6-31+g* level, the potential
energy barriers from the reactant and the product to the
transition state are predicted to be 16 kcal/mol and 32 kcal/
mol, respectively. Using the same level of theory, Hessian
matrix elements (66 × 66) at the transition state geometry are
computed in terms of the mass weighted Cartesian
coordinates and transformed into ones in the internal
coordinates. The B3LYP/6-31+g* harmonic frequency of the
unstable normal mode Q1 is 431i cm−1. A time step of 0.25 fs
is chosen for the simulation. The optimized transition state
complex obtained by B3LYP/6-31+g* is shown in Figure 1.
For the MD simulation, the B3LYP/6-31+g* complex of
MVK and CPD is surrounded by a total of 108 SPC/F2
water molecules in a cubic box with a size of 15.5 Å. In
addition Nosé-Hoover chains of length 4 have been applied
to both complex and water molecules at a target temperature
of 300 K. The constraint MD simulation described in the

previous section has been carried out for 20 ps for
equilibration, and after then actual data are collected every
40 fs during a period of 40 ps. The total energy of the
extended system (system + NHCs) has been plotted in
Figure 2. The standard deviation of the total energy is 10−4

(a.u.), indicating that the energy is conserved reasonably
well for the simulation. The average temperature for the
simulation is 299.7 K and the average temperature
fluctuation is observed to be within 4% of the target value.
The ξ value that is constrained for the RF dividing plane has
been maintained to be less than 10−10 (a.u.), which is usually
achieved by 3 iteration steps. As was seen in Figure 3,
sudden large fluctuations have been observed, but the
magnitudes of these values are still small enough (within
10−10) to be comfortably neglected. Figure 4 shows that the
Zξ value is fluctuating around 1 as the complex structure of
MVK + CPD deviates from the ransition state geometry. The
<Zξ> value is calculated to be 1.004 ± 0.016. Note that the
magnitude of Zξ plays an important role in determining a
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Figure 1. The optimized transition state complex for the reaction of
methyl vinyl ketone (MVK) and cyclopentadiene (CPD) calculated
by the B3LYP/6-31+g* method. 

Figure 2. Total energy fluctuation of the extended system (system
+ NHCs) in a.u. during the 40 ps MD run. Each value of data is
collected every 40 fs. 

Figure 3. Plot of the unstable normal mode ξ = Q1 during the 40 ps
run. The Q1 mode has an imaginary frequency of 401i cm−1 at the
B3LYP/6-31+g* level of theory.
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width of sampling distribution of P(±)( |x) in Eq. (11), and
that  can be directly used as a biasing factor in Eq. (45).
Since the Zξ value is nearly 1 with a relatively small
fluctuation for this simulation, Eq. (9) can be approximated
to be <F>± ≈ dΓ ( |x)F. The fluctu-
ations of two C-C bond distances that are involved in bond

formation or breaking are shown in Figure 5. The symbol R1

denotes the C-C bond not directly connected to the carbonyl
carbon and R2 indicates the other C-C bond directly
connected to it. The average fluctuations of R1 and R2 from
the bond distances of the transition state (1.9948 Å and
2.6883 Å) are 0.05 Å and 0.15 Å, respectively, demonstrating
somewhat larger fluctuation of R2. 

Summary

We have developed the NHC canonical sampling algorithm
to generate the initial conditions for RF studies of organic
reactions in condensed phase. This algorithm can be directly
applied to classical RF MD studies of organic reactions, by
constructing reactive potential energy surface, which has
been an undergoing project. Also it is expected that this
method can provide reliable initial conditions for future ab
initio RF MD simulations to study solvent effects in organic
reactions. 
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Figure 4. The fluctuation of the Zξ value during the 40 ps run. It
provides a sampling width of reaction velocity  of for the 
sampling.
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Figure 5. The fluctuations of the two C-C bonds that are involved
in bond formation during 40 ps run. R1 denotes the C-C bond not
directly connected to the carbonyl group in the complex and R2 is
the other one connected to it. 


