A Facile Synthesis of Thiophenacylketene S,N-Acetals from Treatment of 2-Alkyl-3-alkylthio-5-phenylisothiazolium Salts with Sodium Borohydride

Sung Hoon Kim[†], Youn Young Lee[†], Kyongtae Kim^{*†}, and Jung-Hyup Kim[‡]

†Department of Chemistry, Seoul National University, Seoul 151-742 †Division of Applied Science, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650

Received November 19, 1993

Thiophenacylketene S,N-acetal (1) is an analog of phenacylketene S,N-acetal, which has been known as a potential intermediate for the preparation of various heterocyclic compounds. In comparison with the utility of phenacylketene S,N-acetal, 1 has been rarely studied. Only 1-methylamino-1-methylthio-3-phenylpropene-3-thione (1a) was reported to be isolated from the reactions of 2-methyl-3-methylthio-5-phenylisothiazolium iodide (2, R=Me, R'=Me, X=I) with benzylamine in 12% yield, with benzoyl acetate in 10% yield, and with ethanolic sodium hydrosulfide in 32% yield.

In the previous paper,⁴ we reported that the reaction of 2-alkyl-3-(carbethoxyacetylmethylthio)-5-phenylisothiazolium chlorides (2, $R'=MeCOCHCO_2Et$, X=Cl) with NaBH₄ in a mixture of chloroform and ethanol at room temperature underwent easily S-N bond cleavage to give ring-opened intermediates 1 ($R'=MeCOCHCO_2Et$) which then immediately cyclized to afford 3-alkyl-5-carbethoxy-4-methyl-2-thiophenacylidene-1,3-thiazole (3) as shown in Scheme 1. A similar reaction was obtained from the reaction of 2,3,5-trimethyl-4-substituted isothiazolium tetrafluoroborate with either NaBH₄ or LiAlH₄ at -78°C. ⁵

We have found that the reactions of 2-alkyl-5-phenylisothiazolium halides ($\mathbf{2}$, $X=\mathrm{Br}$, I) having simple alkylthio group at C-3 with NaBH₄ in ethanol at room temperature gave I in good to excellent yields. Compound I, to the best of our knowledge, is not currently accessible by the reported methods. Typical experimental procedure: To the suspension of 3-ethylthio-2-methyl-5-phenylisothiazolium iodide ($\mathbf{2b}$)

2 (R' = MeCOCHCO₂Et, X = Cl) ----- 3

Scheme 1.

Table 1. Yields and Physical Properties of Thiophenacylketene S,N-Acetals (1)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	R	R'	Yield(%) ^a	mp^b	Color
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a	Me	Me	83	91.5-92.5	yellow
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b	Me	Et	98	148-149	yellow
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c	Me	allyl	91	liq	yellow
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d	Et	Me	94	74-75	yellow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	Et	Et	95	73-74	yellow
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f	Et	allyl	98	liq	yellow
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	g	allyl	Me	93	liq	brown
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	h	allyl	$C_6H_5CH_2$	89	95-96	yellow
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	cyclohexyl	Me	100	70-71	yellow
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	j	cyclohexyl	Et	87	liq	yellow
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k	cyclohexyl	allyl	98	148-149	yellow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	phenylethyl	Me	93	112-113	yellow
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m	phenylethyl	$C_6H_5CH_2$	96	106-107	yellow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	$C_6H_5CH_2$	Me	80	112.5-113.5	yellow
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o	$C_6H_5CH_2$	Et	96	liq	yellow
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p	$C_6H_5CH_2$	allyl	96	liq	yellow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	q	4-Me-C ₆ H ₄ CH ₂	Me	93	102-103	yellow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r	4-MeO-C ₆ H ₄ CH ₂	Me	97	120.0-121.5	yellow
u 4-Cl-C ₆ H ₄ CH ₂ Me 90 98-99 yellow	S	2-Cl-C ₆ H ₄ CH ₂	Me	86	83-84	scarlet
· · · · · · · · · · · · · · · · · · ·	t	3-Cl-C ₆ H ₄ CH ₂	Me	97	99-100	orange
v 4-Cl-C ₆ H ₄ CH ₂ C ₆ H ₅ CH ₂ 94 160.5-162 yellow	u	4-Cl-C ₆ H ₄ CH ₂	Me	90	98-99	yellow
	v	4-Cl-C ₆ H ₄ CH ₂	$C_6H_5CH_2$	94	160.5-162	yellow

[&]quot;Isolated yields. "All melting points are uncorrected.

(0.490 mmol) in 95% ethanol (2 ml) was added portionwise NaBH₄ (0.490 mmol). Upon addition of NaBH₄, the solid dissolved and the solution turned to dark yellow. The reaction was monitored by TLC until all of **2b** had disappeared. The solvent was evaporated to dryness *in vacuo*. The residue was purified by column chromatography (Merck, silica gel, 230-400 mesh) using CH_2Cl_2 as an eluent. The yield of **1b** was 98%. Yields and physical properties of **1** are summarized in Table 1.

Acknowledgement. The authors are grateful for financial support by the KIST (2N09152) and the Basic Science Research Institute Program, Ministry of Education (BERI-93-315).

References

- Junjappa, H.; Ila, H.; Asokan, C. V. Tetrahedron 1990, 46, 5243.
- Hassan, M. E.; Magraby, M. A.; Aziz, M. A. Tetrahedron 1985, 41, 1885.
- Bachers, G. E.; Mckinnon, D. M.; Bachshriber, J. M. Can J. Chem. 1972, 50, 2568.
- Kim, S. H.; Kim, K.; Kim, K.; Kim, J. H.; Kim, J-H. J. Heterocycl. Chem. 1993, 30, 929.
- Cuadrado, P.; Gonzalez, A. M.; Pulido, F. J. Synthetic Commun. 1988, 18, 1847.