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The resonance width may be directly determined by solving an eigenvalue equation for width operator which is
derived in this work based on the method of complex scaling transformation. The width operator approach is advanta-
geous to the conventional rotating coordinate method in twofold; 1) calculation can be done in real arithmetics and,
2) so-called B-trajectory is not required for determining the resonance widths. Application to one- and two-dimensional

model problems can be easily implemented.

Introduction

Resonance phenomena occur in various physico-chemical
processes including - electron-molecule scattering,! simple
gas-phase reactions such as H+H,? Thus they play impor-
tant roles in understanding chemical reactions from the dy-
namical viewpoint. In addition, attempts have been made to

relate resonance states with the transition state of chemical
reactions®* The resonance phenomena are generally descri-
bed as the sharp variations of cross sections at certain ener-
gies E (resonant energies) and are related to the existence
of nearly bound states.’

Theoretically resonance can be accurately determined as
the pole of scattering matrix® Evaluation of the scattering
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matrix, however, requires very large amount of computation
even for simple dynamical processes. Another approaches
which probably require less computation are the complex
L? techniques including the rotating coordinate method®™®
and the method by complex basis set’ ! These methods
.are based on the change of boundary conditions imposed
on the Schrodinger equation by introducing complex coordi-
nates or complex basis set.

In the rotating coordinate method, real coordinates are
transformed to complex coordinates by complex scaling and
the Hamiltonian becomes complex accordingly. Since this
transformation is unbounded from real to complex, the spec-
trum of the Hamiltonian is changed. New complex energies
are thus revealed while the discrete eigenvalues for bound
states are retained as real by the transformation.? As the
rotation angle © is increased, complex energies associated
with physical resonances (Ez-¢I/2) may be determined.

In the complex basis set method, the Hamiltonian is eva-
luated in complex bases and the complex energies are obtai-
ned from the diagonalization of the Hamiltonian. By varying
the number of basis, stationary eigenvalues with respect to
basis set size are found to be related with resonance states.
Although these methods are relatively simple and efficient
compared with the scattering calculations, they may be still
computationally very demanding for accurate determination
of resonance widths. Evaluation of resonance width, I, may
be greatly facilitated if the width operator is directly obtained
and then an eigenvalue equation for the operator is solved.
In this paper the width operator is explicitly derived based
on the complex scaling formalism.

Complex Scaling Transformation

Complex scaling transformation rotates ordinary coordina-
tes into complex plane by complex scaling operator (which
is not unitary) U@®) given by

U(0)=exp(iS6) @

where 0 is rotation angle and an antihermitian operator S
is given as follows;
s=1[-L st 1] 2

With the scaling generator S given above, U becomes uhH!
=1TU*. A similarity transformation, where the operator U sati-
sfies above relation, is referred to as a restricted similarity
transformation by which the Hamiltonian is changed to be
complex symmetric."?

Application of U(0) to a coordinate x yields a complex coo-
rdinate xe® and a wavefunction y(x) is transformed as

U@)Y(x)=Y (xe®) 3
The Hamiltonian H is scaled to H(8) as given below
H(0)=U(©®)HU®)* @)

where H(0) becomes complex symmetric as H(0)' =H(0)*.
Width Operator

Scaling the time-independent Schrodinger equation by U
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(0) yields the following
HO®)y(xe®) = Ey(xe®) ()

which shows that the discrete eigenvalues are not affected
by the transformation. However, new complex eigenvalues
are produced from the diagonalization of H(6) since the tran-
sformation is unbounded. The complex energies depend on
0 as E@©)=Eg(0)—i[I'(0)/2]. The complex Hamiltonian can
be decomposed as H(8)=Hz(6)+iH«(®), where both the real
and imaginary parts Hg(0) and H;(8) are hermitian satisfying
the complex symmetric property of H(@). Since the diagonali-
zation of H(0) yields complex energies Ex(0)—i[I'(6)/2] and
both Hg(®) and H0) are hermitian, we are led to the follow-
ing eigenvalue equation for H(6)

HOO)=——1 2

y(0) (6)
where the coordinate dependence of the wavefunction is su-
pressed. From Eq. (6), the width operator I'(®) for given
angle 0 may be defined as

()= —2HL0) %)

Applying Baker-Housedorf theorem® to Eq. (4), H(®) is
obtained as an infinite sum of multiple commutator bracket
between S and H both of which are real as follows

H©®)= exp(i SO)Hexp (—S6)

=H+2 [s a0 (’e) s, (s, W)+ ("”

(s, [S, (s, HI1]+-
= Hg(6) +7H/(6) ®

Since the commutator bracket between the antihermitian S
and the hermitian operator H is hermitian, all the commuta-
tors in Eq. (8) are hermitian operators which satisfy the her-
miticity of both Hg(8) and H{0). The imaginary part of Eq.
(8) gives the detailed expression for HAO) as,

H©)=2 _e &
(s, [S, [S, [S, [S, HIIJ1]+-~

" on+1 brackets
A

_e_ Y s T
=3 o S, 8.+, 8, HI-1]

Lo (-
n=0 (2n+ 1)‘

eZn + 1C52n + IH (9)

where the operator Cs***'H is a (2n -+ 1)-multiple commutator

between S and H which is defined as follows

2n+1 brackets
e

C82n+1HE[g, (S, [S, H]---i]
Sy @
'Ig( Y hen—piS LS, HIS (0

The width operator I'(8), which is hermitian, is obtained
by combining Egs. (7), (9), and (10) as below

I'(0)= —2sin(6Cs)H 11
where CsH is CsH=[S, H]."* Eigensolutions for the opera-
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tor I'(®) are the widths as functions of 8 as shown below

I(0)0,(6)=T.(8)¢.(6) (12)

where T'(0) is given in Eq. (11) and its eigenvalues I,(0)
are real. To solve Eq. (12), consider a following eigenvalue
equation for [S, HJ,

[S, Hllm>=a,lm> 13)

The operator [S, H] can be evaluated explicitly using Egs.
(2) and (13) as shown below

(S, H]= —2[—29:; +Veff] (14)

where V(x) is Vx)= — (1/2(dV/dx) and V(x) is the poten-
tial energy of the system. Since [ S, H] is bounded in certain
regions of space, a number of its lower eigenstates may be
bounded which are of our interest for the determination of
resonance widths. If the multiple commutator for n>0 of
Eq. (10) is applied to |m> which is the bound eigenstate
of [S, H], the result will include the terms containing S'|m>
for ! upto 2n. Since |m> is bounded, S'|m> would become
bounded and its norm, however, would be progressively
smaller as ! is increased (|S{m>(<|/lm>|). We may there-
fore truncate the infinite sum of Eq. (9) according to the
desired accuracy. Taking the series upto #=1, the width
operator I'(6) can be approximated as follows
_ 0 [N
T@w=—2{5[S, H1— (S8, HI+[S, HIS?

—28[s, HIS)} . (15)

The 0-dependent widths I',(8) may be obtained approxima-
tely by evaluating the expectation values of I'(0),,, in terms
of bound eigenstates of [S, H] given below

F,.(G)z<n|l"(9),lmln>
- _8 2> —
= —2{0a,~ {0, <nIS*ln>— <nlS[S, HISIn>)} (16)

In order to determine the physical resonances from the
0-dependent widths, I,(), we have to find out the optimal
value of 6 at which <#n|dI'(0)/d0|n>|0, is stationary with
respect to variation of 6 around @, implying®®

dar)

<n|Tln>|eo=0 an

Tae Jun Park

From Eq. (16), 8, may be obtained as

1/2

_ Oy
e0_(ovm<n|SZIn>—<nIS[S, H]S|n>> as)

As the derivation shows, we only need to solve the eigen-
value equation of [S, H] (Eq. (13)) in order to determine
the resonance widths approximately with desired accuracy.
Once the bound eigenstates |m> are obtained, S'lm> may
be easily evaluated. All these calculations can be done in
real arithmetics because of the hermitian nature of the ope-
rators involved. In addition, 6-dependent calculations may
not be repeated which are required in the usual rotating
coordinate method. Application to one- and two-dimensional
problems can be easily implemented.

References

1. Rescigno, T.; McKoy, V.; Schneider, B. Eds., Electron-
Molecule and Photon-Molecule Collisions (Plenum, New
York, 1979).

2. Rom, N.; Moiseyev, N. /. Phys. Chem. 1994, 98, 3398.

. Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. 1972, 96,

6515.

Zhao, M.; Rice, S. A. J. Phys. Chem. 1994, 98, 3444.

. Taylor, J. R. Scattering Theory (Wiley, New York, 1972).

. Obcemea, C.; Brandas, E. Ann. Phys. 1983, 151, 383.

. Chatyidinmitriou-dreismann, C. A. Adv. Chem. Phys. 19
91, 80, 201. '

8. Chu, S. In Resonance in Electron-Molecular Scaltering, van
der Waals Complexes, and Reactive Chemical Dynamics;
Truhlar, D. G. Ed., (American Chemical Society, Washi-
ngton D. C. 1984). :

9. Bardsley, J. N.; Junker, B. R. J Phys. 1972, B5, L178.

10. Isaacson, A. D.; McCurdy, C. W.; Miller, W. H. Chem.
Phys. 1978, 34, 311.

11. Issacson, A. D.; Miller, W. H. Chem. Phys. Lett 1979,
62, 374.

12. Lowdin, P. O. Adv. Quantum Chem. 1988, 19, 87.

13. Merzbacher, E. Quantum Mechanics (Wiley, New York,
1970).

14. Pechukas, P.; Light, J. C. J. Chem. Phys. 1966, 44, 3897.

15. Brandas, E.; Frolich, P.: Hehenberger, M. Int. Quantum
Chem., XIV, 1978, 419.

w

NS N



