A Stochastic Investigation of a Dynamical System......
References

(1) A.A. Lamola, T. Yamane and A .M. Trozzolo, Science, 179
1131 (1973).

(2) H.U. Weltzine, Biochim. Biophys. Acta, 569 259 (1979).

{3) I.E. Kochevar. J. Invest. Dermatol., 74 256 {1980).

(4) |.E. Kochevar and M. Yoon, Photochem. Photobiol., 37 279
(1983).

(5) P. Walrant and R. Santus, Photochem. Photobiol., 19 411
(1974).

{6} P. Walrant and R. Santus, Photochem. Photobiol., 20 455
{1974).

(7) R. Yamauchiand S. Matsushida, Agric. Biol. Chem., 41 1425
(1977).

(8) E. Amouyal, A. Bernas and D. Grand, Photochem. Photobiol.,

Bulletin of Korean Chemical Society, Vol. 6, No. 5, 1985  29%

29 1071 (1979).
(9) F.G.r. Moses, R.S.H. Liu and B.M. Muroe, Mol. Photochem.,

1 245 (1969).

(10) E.P.Kirby and R.F. steiner. J. Phys. Chem., 74 4480 (1970).

(11) K.A. BBrown-Wensley, S.L. Mattes and S. Farid, J. Am. Chem.
Soc., 100 4162 {1978).

(12) J.R. Lakowicz, "'Principles of Fluorescence Spéctroscopy’’, pp
257, Plenum Press, N.Y. (1983).

{13} C.R. Goldschmidt, R. Potashnik and M. Ottolenhi, J. Phys.
Chem., 76 1025 (1971).

(14} G.N. Taylor, Chem. Phys. Lett.,, 10 355 (1971).

(15) C.S. Foote, ‘'Singlet Oxygen’' Advances in Chemistry, ACS, pp
1389, Academic Press, N.Y. (1979)}.

(16) J. Eriksen and C.S. Foote, J. Am. Chem. Scc., 102 6083
(1980).

A Stochastic Investigation of a Dynamical System Exhibiting the Second-Order Phase Transition

Kyung Hee Kim and Kook Joe Shint

Department of Chemistry, Seoul National University, Seoul 151, Korea

Dong Jae Lee*

Department of Chemistry, Chonbuk National University, Chonju, Chonbuk 520, Korea

Seok Beom Ko

Department of Chemical Education, Chonbuk National University, Chonju, Chonbuk 520, Korea

(Received June 11, 1985)

An approximate solution of the Fokker-Planck equation with the nonlinear drift term due to a Schlégl model is obtained and
the result is compared with the methods proposed by Suzuki. Also the effect of nonlinearity on the correlation length at the

stable steady state is studied.

Introduction

In recent years, there have been considerable interests in the
behavior of systems far from the thermodynamic equilibrium,
which exhibits instability. Such phenomena are observed in
many fields*-*. Especially, the laser model® draws a great at-
tention. Recent investigations of several authors® ” have pro-
vided the analogy between transitions in unstable systems and
phase transitions. Their theory is applicable to any system whose
macroscopic behavior is governed by nonlinear evolution
equations.

If there is no random force which is caused by internal
microscopic fluctuations, a system in an unstable state does not
undergo decaying process. Once the decay of the unstable state
is initiated, fluctuations are amplified by the linear contribu-
tion which shows exponential divergence. Later, these fluc-
tuations are affected by the nonlinear effect and then have the
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finite steady state value. This fact has been studied from the
Langevin eq. by Suzuki® with his scaling theory and also by
Valsakumar and his coworkers.®

Also several authors have tried to obtain the probability
distribution function satisfying the Fokker-Planck equation.
Among them, Suzuki®* '° has divided the whole range of time
into three parts, that is, initial, intermediate and final regimes
and introduced the scaling theory connecting the initial and in-
termediate regimes. This theory is successful in describing the
intermediate regime but does not describe the final steady state
properly. Later, he has proposed the unified theory*! using the
properties of the exponential streaming operator. In addition,
Valsakumar®? has obtained the formally exact probability
distribution function using Trotter’s formula, but it has a rather
complicated form and is difficult to handle.

In this work we study a chemical system which can be describ-
ed by a stochastic variable governed by a Fokker-Planck equa-
tion. The nonlinear drift term in the Fokker-Planck equation
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is given by a Schlégl model which exhibits a second order phase
transition. Recently, one of us reported the dynamic proper-
ties of a system near the stable steady state.’® The model adopted
there was another Schlégl model exhibiting the first order phase
transition. Following their generalized version of Suzuki’s scal-
ing method of solution, we obtain in the first section an ap-
proximate solution of the Fokker-Planck equation with the
present Schlogl model and also we get the second moment of
the stochastic variable of the chemical system. In the next sec-
tion, the time-dependent correlation length near the stable
steady state is obtained by substituting the variable satisfying
the rate expression into the equation which we treat. This
method shows the effect of nonlinearity at the stable steady
state.

Theory

As an example of the system exhibiting the second order phase
transition, let us consider a Schidgl model, which is given by
FXF ))=aX({F ) -8X (7 1) A 1), (1)
where a and f8 are assumed to be positive constants, A is a pum-
ping parameter, and F[X] is the nonlinear rate expression.
Another Schlégl model investigated earlier by one of us'® con-
tains a cubic term, — X (f, t)?, instead of the above quadratic
term and it belongs to a different category of stability which
leads to the first order phase transition behavior. The present
model exhibits a second order phase transition as discussed
below.

This model describes the derivative of the concentration of
the intermediate X with respect to time in the following chemical
reaction scheme with concentrations of other species being held
constant.

A+X=2X
B+X=C (2)

Steady states of eq. (1) are determined by the solution of the
equation, F (X3, 13)=0. In Figure 1 we plot the curve
Y = aX3-fX3? as a function of Xg. If the value of Y becomes
smaller than a certain transition value of Y = |A%|, we have two
roots which correspond to two steady states. Since X§ is con-
tinuous at the transition point, |A%|=0a?/48, this model is
regarded as showing the second order phase transition. The rela-
tionship between Xg and A is shown better in Figure 2. From
the linear stability theory it is well known that the steady state
is on the stable branch if the first order derivative of A3 with
respect to Xg is positive and it is on the unstable branch if the
derivative is negative. At the marginal stability point the
derivative vanishes. For simplicity we let A=0 in the Schlogl
model. Then, X3 =0 and X =a/f8 correspond to the unstable
and the stable steady states, respectively.

Inhomogeneous nonlinear Langevin equation for the
stochastic variable X (f, t) is given as

XL pyx (¢ n+FEEDI+ G (3)
where D is the diffusion coefficient and n (f, t) is a random
force which satisfies the Gaussian condition.'®
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Figure 1. The quantity Y = aX% — BXg as a function of Xg
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Figure 2. The dependence of X% on A%,

Here, d (X) is the Dirac delta function. The equivalent Fokker-
Planck equation to the above Langevin equation is

9 2
YRl X, t)= —a—X{[D P*X+F (X7 t))P (X, 1))+

a!
D-a—x—,P X, 1) (5)

(A) An approximate method to the solution of the nonlinear
Fokker-Planck eq. with the Schlégl model.

Now let us consider the general Fokker-Planck eq. given by

2 2
E—P X, t)= ry FX, )P (X, ¢))

=) 2
+3% 4 (X, t) a_X[A X OPX. 1)) (6

where A (X, t) and F (X, t) are the functions of X and t. This
equation corresponds to the homogeneous Langevin equation,
i.e., eq. (3) without the diffusion term.

We assume that the general solution P (X, t) has the follow-
ing form

PX,)=N{pB{)/a@®)IH (X, 1) exp[-y O)HX, )*) (7)
where N is the normalization constant, a(t), b(t) and y(t) are
functions of time, and H(X, t) is a functional of X and t. The
prime in the expression H’(X, t) denotes the differentiation with
respecf to X. This form of the solution. is a generalization of
the scaling solution of Suzuki'® in that his expression contains
a functional of X, f(X), which appears in a similar fashion as
in eq. (7) whereas our H (X, t) is a functional of both X and
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t. The earlier work'® by one of us also employed this assump-
tion implicitly in the analysis of another Schlégl model. We
substitute eq. (7) into eq. (6) and assume the following relations:

a(t)=AX HH (X 1), (8a)
Then we obtain three relations:
BHX t) _ oH (X, 1)
B S &)
_or () _ : :
Y =4a(t)?y (1) (8c)

ob(t)/at  Qa(t)/dt _
b (1) al(t)
From the above equations, we obtain the solution of eq. (6)
in the following form

—2a(t)y (t) @8d)

H (X,t)
(it ale) e ey ¥
HX,t)?®
4[_£ta(r)’dr+c1]

PX )=

X exp{— ' (9)

where ¢, =1/4y(0).
If we keep only the linear term in F (X, t) with A (X,
ty=D", we get from eqs. (8b) and (8a).

at)=DF exp(-at), (10)
For this linear case we obtain the following solution
X—-X,e?)?

PX, t)= [‘—5‘—2“——]% . exp{—(——"&}, (11)

7 (ett= 1)
a

22 (e 1))
a

where we let ¢, =0 for simplicity.

This is the well-known Ornstein-Uhlenbeck solution.'?
Therefore, it might be a reasonable approximation to choose
a(t)=D"e™* for the nonlinear case. The resulting nonlinear
probability distribution, P (X, t), is given by

P =gt 6 @ e i-S2 0 )
where in our model

D) =2 (et -1) (128)

HX 5 =Xe 1= X - ee) (12b)

G N =eH X, N =XU-Exa-e-)n a2

and the prime in the expression G’ (X, t) denotes the differen-
tiation with respect to X. As time goes to infinity, this probabili-
ty distribution becomes Suzuki’s scaling solution'® in the
following form:

Puc (X,0) = (=) ¥ 67 ) - exp{—g;’(?)'} 13)
where
D (1) = Zetar (13a)
a
G(X)=XE1—’:;X]-* (13b)

At the stable steady state, the probability distribution is given by

P(X,) =4 exp{- g%—Xiﬁlz—DX;, | (14)

where A is a normalization constant. The time evolution of the
probability distribution is shown in Figure 3.
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Figure 3. The dependence of P(X,t) on time.
la=f=1,D=0.1}.

If the diffusion term is included in the rate expression, the
probability distribution may be obtained in the long time and
weakly nonlinear regime according to the method of Kawasaki
and Kim."V’,

The average of X (t)* depending on time is

<x®>=[Tx xPxy/ X PxH ()

Using eq. (12), we have

2 3 G
J ( ik
b -/; 1+,:—(1—e‘“

<Xt i>=(
b4 G
G?
Xexv[—mjdc (16)
Explicit calculations are given in Appendix. As time goes to in-
finity, its limiting value is (a/B)?, i.e.,

lm<X (1) 5> = (;—)’, (17)
The average value of X} at the stable steady state is given by
<Xi>= [CIXuXLP (X)) [dXuP X, (8)

For arbitrary o and 8, we can obtain this value by the numerical
integration using Simpson’s formula and we found that

<X3> =lim <X (1) *>. (19)

(B) Time correlation functions for the fluctuating variables.

In this section, we shall discuss the time correlation functions
at a stable steady state when the system relaxes from an unstable
state.

In order to consider the effect of the random force on the
variable, let us separate the variable into two parts, that is, the
variable X° (f, t) governed by the rate expression and a fluc-
tuating part due to the random force, dX (f, t).

Then we obtain

2]

pe X (7, t)=DPX° (¥ t)+aX° (7, t)—ﬁ[X" (F.t)* (20a)
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X(@F )=DVeX (7 1)+ [a—28X" (7, 1))6X (7, )
—BEX(F 1) 45 ). (20b)
Eq. (20b) can be written as

510X 1) =~ (DR*26X" (1) ~a)sX (6. 1) 47 £.0)

__B de,dlE}é‘(E—E,—Ez)b‘X(El.t)&X(Ez.t) 1)
2n)

2
ETd

by introducing the Fourier transform as follows:

£k t)=fdf e %R ) (22a)

- - 1 ;oK.
fi# )= (2”),fdke f(E ). (22b)

The solution of eq. (20a) can be written as
X (0)=X"0)e"1-Ex0) 1—em) ()
Here we assume the following Gaussian condition

< SX(KO0)n Kk t)>=0 (24)

<5X (K t,)8X(K1t,) «&X(E t,)>=0if nis an odd
integer, sum over
all the possible pair
products if n is
an even integer.

Now we define a time correlation function as

GE Lt )=<oXEDSXE t')>5 F—F). (25)
We first consider eq. (21) neglecting the nonlinear term. Using
the condition, eq. (24), the time correlation function is given by

G (Et)=

At a stable steady state the correlation function is
G° (K 1)=<6X(K 0)> exp{—DKk*+¢-9t}  (27)
where ¢ is the time-independent correlation length defined as

¢ 28Xu—a) =% 28)

If we consider the time-dependent X° (t) given by eq. (23), the
time-dependent correlation function is

G (K t)=<8X(k 0)> - expl D ke (1) tb (29)

where the time-dependent correlation length, £(t), is defined as

<sX(kO0)P> ydt'y (26)

12
8075 1-2X0) a—e)- £ )

As time goes to infinity, the time-dependent correlation length
is equal to the time-independent correlation length. Next, we
consider the effect of nonlinearity on the correlation function.
Using the condition, eq. (24), the time correlation function is
derived in the following way:

Multiplying eq. (21) by ¢X (E, O) and averaging it,
we obtain

%q‘x(ﬁ, tYoX(E 0)>=—(DE+28X° (t)—a)

X<8X (K 1)oX K 0)>—2—), j;ik dF,5 F—Fk,—F,)
X<8X(k,t) 06X (K, t)6X (F 0)> 31)

If X° (t) has the steady state value, the solution of eq. (21) is
given by
SX (K, t)

=0X (K, O)exp(—D (k*+¢ ~*)t)
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+f7, (F ¢ )exp(—D (k*+£ %) (1—1') ) ds”
(T%ﬁ‘d"exp[—n k* g1 (t—t'))
xdeldk',é‘ K—E,~F) 6X(E, t')6X (K, t”)
=X, t)+oX,( t) (32)
where each term is defined as
X,k t)=6X(F0) exp(—Dk*+¢)t)
+['n (Kt )exp(—D (ki+&~%) (t—t'))dt’ (32a)

58X, (K, t)=—(zi),[dt'ex;>[—n (k+e-%) t—1))

x /d;;, dE,6 (F—F,—K,) 60X (E, 1) 6X (K, ') (32b)

From eq. (31) the time correlation function is given by
G t)=<6X( 0)>expi—Dk*+¢; (1))t} (33)
where the correlation length with the nonlinear effect, £,(t),

is defined as

gt (t)=¢ ’9.

(0, 8) > (34)

with £ given by eq. (28). As time goes to infinity, the value of
<dX; (O, t)> becomes finite. That is,

lm<sX, (0, 8)> ——-B2_ *fg . (35)

Therefore, the above correlation length in the long time limit
is given by

28*

lmegt(e) = '—W (36)

As shown in the above result, the correlation length with the
nonlinear effect is larger than the correlation length obtained
with the linear approximation.

If we consider the time dependence of X° (t), the solution
of eq. (21) is given by

XK t)=5X (K. 0)exp {-~’/°'[Dk’+2ﬁX° ') —a)dt’}

+ [0 E ) expi— [ Dk 28X () —addt" ar
0 ¢
__L 'y —_ ! 2 ° famy __ ”
7 ),ﬁ at’ exp {— [, (Dk*+28X° (") —a)dt”}
X [dkdR5 (E—F,—F) 8 X (E, /)5 X (F, 1)
=5X, (K t)+6X; (K 1) 37)
where each term is defined similarly as in eq. (32). From eq.
(31) the corresponding correlation function is given by
Gk t)=<b6X(k 0)">exp{—Dk™+£52())t} (38)

where the correlation length, ¢, (t), with the nonlinear effect
and the general time-dependent X° (t) is defined as
d =gt +28— <s5x0. ¢ 3
E =7 )Pk <oX((0.0)> (39)
with &(t) given by eq. (30). Near the stable steady state the con-
tribution of <dX; (O, t)> to the correlation length is finite;
D

lim< 82X/ (0,8)>=—-LD_

im ©,1) 2 2n) (40)
So, the above correlation length near the stable steady state is
given by
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28°*

@ 2 (2”) 12

and at the stable steady state this correlation length is equal to

&r(D).

g ) =¢20)— 1)

Discussion

In the first part of this work we have obtained an approx-
imate solution P (X, t) to the Fokker-Planck equation with the
nonlinear drift term due to a Schldgl model in terms of the func-
tion G (X, t) which is a functional of X and t. This sclution
may be compared with the recently proposed Suzuki’s solution.
That is, the solution obtained after the first-order decoupling
of the exponential operator in Suzuki’s unified theory'' is ex-
actly equal to ours. This distribution function P (X, t) does not
describe the approach to the final stable steady state properly.
The reason why the present probability distribution function
does not approach to the final steady state distribution func-
tion given by eq. (14) is that our approximate method of solu-
tion is based on the scaling theory of Suzuki. At present no exact
solution to the nonlinear Fokker-Planck equation is available
and the best approximate solution to date is based on the scal-
ing theory or at best some modification of it. Since the scaling
theory is dealing with the initial and intermediate regimes and
the description of the passage to the final regime is only at the
formal and still approximate level.’* ' However, the second
moment approaches the final steady state value in the long time
limit. Some attempts have been made to resolve this problem
but it seems rather difficult and more vigorous study is needed.

Secondly, we have obtained several correlation lengths at the
stable steady state and we conclude that the correlation length
with the effect of nonlinearity is larger than the correlation
length considering the linear term only.

Appendix
We obtained eq. (16) with the following form
<XWO™>= (2 ﬁf{ i
/9 -
(1-e-otyG
G?
Al
X exp (=55 oG, (A1)
Transforming G*/D (t) into u?, we have
_/ 2 exp (= A
y>=/E D) [Tt e (=) (A2

where

=%D (t)'i_ (l_e—al)‘

In the above eq. (A2) the integrated part is divided into two
parts.

* _“_ 7, _-— -ul,/2 — l._Li\
£ O3 el ]d“ B’fe %= (B BB
x <f1+13u-e-2— du} (A3)

The first term on the rhs is easily integrable and the second term
is given by'.
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1 1 1
» 1+Bu d""‘e [/—f “dt =B Cp)
(A4)

where E, (X) is the exponential integral function which is defined
asl4

« X7?
E,X)=y+In X+ % - (AS)

— (X>0, y=0.5771).

Using the above definition, eq. (A2) can be written as

i—/z—l em/—f” “dt ——E, (7

<X(t)’>=A, 1B

1
e e W P eta—LE, ¢l

A'B* AB 2B?
1 1 L =1 1
- %-A,B,—?—m-e 28 {1+n§m—,%3,)"} {AB)
where
A*i(l—e'“‘).
a

As time goes to infinity, B also goes to infinity and only the
first term on the rhs of eq. (A6) survives,
From this fact we can have

lim <X (1)!> =+~ (&

5= () (A7)
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