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Mass spectrometry (MS) is a very useful means by which
to study the interactions of meta cation-biomolecule
complexes in the gas phase.? The analysis of the fragmen-
tation patterns of metal cationized peptides produced under
electrogpray ionization (ESI)-M S can provide complementary
information for peptide sequencing when the fragmentation
of the protonated peptide is insufficient.3* The specific
interactions in metal ion-peptide systems have been studied
to develop practical sensors for the detection and quantifi-
cation of metal ions.>’

Complexes of trangition metal cations and peptides
(transition metal®*--- peptide)** have been studied by many
research groups.®® However, investigations regarding the
[(Metal®*--- peptide) — 3H]™* anion complex have not been
conducted systematically using MS."**™ The copper and
nickel binding peptide Gly-Gly-His has been investigated in
agueous solution because the peptide Gly-Gly-His mimics
the form of the specific Cu®, Ni*-transport active site of
human serum albumin,*2*3

Theoretical studies concerning metal-oligopeptide struc-
ture and metal-ligand coordination geometry have also been
performed through molecular dynamics smulations and ab
initio calculations**” Structures, molecular orbital and
stabilization energies of metal-oligopeptides are reported by
the research groups.

In this study, our attention was focused on the interaction
between the oligopeptide of three amino acid residues Gly-
Gly-His and metal ions (Cu?*, Ni?*) in the gas phase. The
interaction between the Gly-Gly-His and metal ions was
studied by ESI-MS in negative mode. The fragmentation
pattern of the [(Cu®, Ni?*---Gly-Gly-His) — 3H*]™* anion
complex was analyzed by MSM S and MSIMSM S spectra.

Experimental Section

The gas phase [(Metal®*---Gly-Gly-His) — 3H"]™* anion
complex was produced by an electrospray ionization source.
The experimentdd MS, MS/MS and MS'MS/MS data for
fragmentation pattern analysis were obtained using a Thermo
Finnigan LTQ mass spectrometer (Thermo Electron Corp.,
San Jose, CA, USA). This mass spectrometer is alinear ion
trap mass spectrometer equipped with an atmospheric pres-
sure-ionization source.

LTQ conditions. All spectra were acquired in negative

ion mode over a range of m/z 100-400 by averaging 40
scans. The heated capillary temperature was set at 200 °C to
facilitate efficient complex formation. The electrospray
needle voltage was set a 3.3 kV. Nitrogen was used as the
sheath gas (flow 20 units) and auxiliary gas (flow 5 units) in
the electrospray ionization region. The samples were intro-
duced into the elctrospray interface by a direct infusion
method using a microsyringe pump (SEG, Australia) at a
flow rate of 10 mL/min. The MS/M S spectra were acquired
with experimental conditions of an isolation width of 1 mass
unit, an activation time of 30 msec and g, = 0.25. InMSMS
mode, the parent ion molecules were manually selected one
by one, and each was subjected to collision-induced disso-
ciation (CID).

Reagents. Gly-Gly-His (99%, Sigma-Aldrich Koreg), Cupric
chloride dihydrate (99%, Sigma-Aldrich Korea), Nickel(11)
nitrate hexahydrate (97%, Junsei chemical Co., Tokyo,
Japan), Zinc nitrate hexahydrate (98%, Sigma-Aldrich Kores),
Cacium chloride dihydrate (98%, Dae Jung chemical,
Korea), and H,O (HPLC grade, Merck) were used in experi-
ments. Gly-Gly-His was dissolved in water to prepare a 2.4
x 10™* M solution. The four metal solutions were prepared in
water at a final concentration of 2.4 x 10* M. These two
solutions were mixed together prior to obtaining the mass
spectra

Results and Discussion

The structural features of the [(Cu**---Gly-Gly-His) —
3H"™ complex in aqueous solution are shown in Figure
1.1819 The [(Cu**---Gly-Gly-His) — 3H"]™ complex is seen
to possess a planar structure involving the coordination of a
termina amino nitrogen, two deprotonated amide nitrogens,
and the imidazole-N3 atom. The [(Cu**---Gly-Gly-His) —
3H"? planar complex between Cu?* and four central
nitrogen atoms (4 N) is known as the most stable structurein
the four-coordination complex geometries.

Negative mode M S spectra of four metal ion complexesin
aqueous solution are shown in Figure 2. The [(**Cu?*, ®Ni?*,
84z7n?*, Caf*---Gly-Gly-His) — 3H'] ! complexes were observ-
ed a m/z 329, m/z 324, m/z 330, m/z 306 and the [(Gly-Gly-
His — H")] ™ peptide ion was observed at m/z 268 (Fig. 2).
The most meaningful observation gleaned from the MS
spectraisthat the formation efficiency of [Cu?*, Ni?*---(Gly-
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Figure 1. Structure of [(Cu?"---Gly-Gly-His) — 3H"]™ complex in
aqueous sol ution.
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Figure 2. MS spectra in negative mode: (a) Cu?* ion + Gly-Gly-
His, (b) Ni% ion + Gly-Gly-His, (c) Zn?* ion + Gly-Gly-His and (d)
Ca* ion + Gly-Gly-His.

Gly-His—3H")]* complex is much better than that of [Zn?*,
Ca*---(Gly-Gly-His — 3H")]™* complex. The more than
adequate formation efficiency of the [Cu?*, Ni%*---(Gly-Gly-
His — 3H")]™* complex was explained by the stabilization
energy of the four-coordination planar structures in the
[Cu?, Ni?-—-(Gly-Gly-His — 3H"]™ complex.’®® The
reason of bad formation efficiency of the [Zn?*---(Gly-Gly-
His—3H™")]* complex is not clear in this step. The ratios of
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Table 1. The ratios of [(Metal?*---Gly-Gly-His) — 3H*] ™ pesk area
to {[(Gly-Gly-His — H")] ™ pesk area + [(Metal?*---Gly-Gly-His) —
3H"™ pesk area} in Figure 2
Peak Area [(Metal?*---Gly-Gly-His)-3H" !
Peak Area{[(Gly-Gly-His— H)"|*
+ [(Metal?*——Gly-Gly-Hig)-3H"] 4}

cu** 0.992
Ni2* 0.689
Zn? 0.093
cat 0.091
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Figure 3. MS/MS spectra of [(Cu?*, Ni?*---Gly-Gly-His) — 3H*]*
complexes: (a) [(Cu?*---Gly-Gly-His) — 3H*]™* complex and (b)
[(Ni?*---Gly-Gly-His) — 3H"]"* complex.

[(Metal**---Gly-Gly-His) — 3H"]™ pesk areato {[(Gly-Gly-
His — H")]™ peak area + [(Metal?*---Gly-Gly-His) — 3H*]
peak area} are reported in Table 1. The metal isotope peak
effects are also included in the area ratios. The adequate
formation efficiency of the [Cu®*, Ni?*---(Gly-Gly-His —
3H")]™* complex could explain why the specific Cu?*, Ni?*-
transport active site of human serum abumin is similar to
Gly-Gly-His peptide.1>3

The MS/MS spectra of [(Metal?*---Gly-Gly-His) — 3H*] ™
complex are shown in Figure 3. The fragment ions at m/z
285 in Figure 3a.and at m/z 280 in Figure 3b are thought to
be a result of the common loss of a CO, moiety from the
[(Cu?, Ni?*---Gly-Gly-His) — 3H"]™* complex a the low
collison activation energy. Yang et al. reported that the
fragment ion of a44u loss corresponds to a decarboxylation
from the histidine residue.” In their previous works, the CO»-
loss fragment of m/z 285 was reported as the one of severa
fragments of the [(Cu?*---Gly-Gly-His) — 3H*]™* parent ion
because of the uncontrolled collision activation energy in the
anion formation MS spectrum. It is worth noting that the C-
CO, bond of the [(Cu?*, Ni?*---Gly-Gly-His) — 3H']"* com-
plex was found to be the weakest bond of the [(Cu?*, NiZ*---
Gly-Gly-His) — 3H]™* complex in our low energy CID-MSY
MS spectra.

The MSIMSIMS spectra of the CO.-loss fragment that



842 Bull. Korean Chem. Soc. 2007, Vol. 28, No. 5

100 4

a) [(Cu™—GGH) - 3H"-CO,| " 285

B0 4
o 6041 @329
s |
T 40{ @285
g |

204 O
o 241 (- 88)1
= 0 v L rh 1
2 1001 P R
=2 b) [(Ni*—GGH) - 3H - CO,] " 280
o 804
£ 251 (-73)
= 60{ @324
E : 223 (-101)

401 280

| 194 (-130)
204 O
T T T - | T III T | 1
125 150 175 200 525 275 300
m/z

Figure 4. MSIMS/MS spectra of [(Cu?*, Ni?*---Gly-Gly-His) —
3H"—CO,] ™ complexes: (a) [(Cu?*---Gly-Gly-His) —3H* —CO]
complex and (b) [(Ni?*---Gly-Gly-His) — 3H* — CO,] ™ complex.

originated from the [(Cu*, Ni**---Gly-Gly-His) — 3H"™
complex are shown in Figure 4. It is assumed that the
observed fragments of m/z 251, m/z 223, m/z 194 in Figure
4b) are the X2, y» and X, ions of the [(Ni?*---Gly-Gly-His) —
3H" — CO,]™* complex. However, the main fragment of the
[(Cu**---Gly-Gly-His) — 3H* — CO,]™* complex in &) was
observed a m/z 241. The fragment of m/z 241, the ion
resulting from a 44u loss from the [(Cu**---Gly-Gly-His) —
3H" — CO,] ™! complex, is not a fragment normally obtained
in the peptide dissociation in a typical MS spectrum. The
additional 44u-loss could be explained by a C;H4NH>, or
HCONH, or HCOCHj loss from the [(Cu?*---Gly-Gly-His)
—3H" —CO,] ! complex. It is difficult to address the mech-
anism for the formation of these ions because of the lack of
information in the collison-induced dissociation spectra.
Further experimentation is needed for a better understanding
of the fragmentation patterns in the [(Cu?*---Gly-Gly-His) —
3H* —CO,  MSMS/MS spectrum.

In summary, the adequate formation efficiency of the
[Cu?, Ni?*---(Gly-Gly-His — 3H"]™ complex in the gas

Notes

phase MS spectra reflects what is aso observed in the
solution phase absorption spectra. The C-CO; bond is found
to be the weakest bond of the [(Cu®*, Ni?*---Gly-Gly-His) —
3H"]"* complex in our low energy CID-MS/MS spectra. The
gtructure of the [(Cu?*, Ni#*---Gly-Gly-His) — 3H"]™* complex
in the gas phase was assumed to maintain the planar
structure it held in the solution phase on the basis of the
analysis of theMS and MS/M S spectra.
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