Asymmetric Synthesis of α -Alkyl- α -phenylglycines

Seung-Han Lee,* Eun-Kyung Lee, and Soo-Min Jeun

Department of Chemistry, Kyunghee University, Yongin 449-701, Korea Received April 24, 2002

Keywords: α -Amino acids, α -Alkyl- α -phenylglycines, Asymmetric synthesis, Oxazinones.

 α , α -Disubstituted α -amino acids are popular replacements for naturally occurring amino acids in peptides. Peptide analogs, containing these substitutions, often have useful enzyme inhibitory and other important biological properties. In recent years, a number of methods to construct chiral α , α -disubstituted α -amino acids have been developed. In most approaches, the stereogenic center is established in alkylation reactions of chiral, nonracemic enolates, e.g., those derived from 5,6-diphenyl, 5-phenyl, and 6-phenyl-1,4-oxazin-2-ones. However, removal of the chiral auxiliaries is known to be problematic in routes where α -alkyl- α -arylglycines are the targets.

Recent studies in our laboratory have led to the development of a new route for asymmetric synthesis of α -alkyl- α -phenylglycines. The sequence involves sequential arylation of the Williams oxazinone 1 generating 3-phenyloxazinone 2, alkylation to form intermediate 3-alkyl-3-phenyloxazinones 3, and stepwise removal of *N*-BOC group and the chiral auxiliary.

To begin the sequence, (3*S*)-3-phenyloxazinone **2** is prepared by using the reported method. Treatment of **2** with NaHMDS or KHMDS at -78 °C in THF, followed by addition of the alkyl halide, stirring at room temperature, and quenching with saturated aq. NH₄Cl at -78 °C, yields the corresponding 3-alkyl-3-phenyloxazinones **3** in moderate to high yields and with high diastereomeric purities (Scheme 1, Table 1). High diastereoselectivities are observed even in processes where small alkyl halides (*e.g.*, methyl iodide) are employed. Interestingly, attempts to run the alkylation reac-

tion at -78 $^{\circ}$ C met with failure with only epimerized (3*R*)-3-phenyloxazinone **2** being recovered. ^{6,8}

For the purpose of determining the level of diastereoselectivity associated with the alkylation reactions, (3*S*)-3-methyl-3-phenyloxazinone **5** was prepared by using the reverse sequence (*i.e.*, alkyation followed by arylation) to introduce the 3-substituent (Scheme 2). Analysis of the ¹H NMR spectra of the oxazinones **3a** and **5** showed that both methylation of **2** and phenylation of **4** yield single diastereomers (**3a** and **5**, respectively) of the 3,3-disubstituted products. However, in contrast to the high efficiency of the methylation reaction of **2**, phenylation of **4** is a low yielding (44%) process.

When the 5,6-diphenyloxazinone template is used for α -arylglycines synthesis, new methods are needed to bring

Table 1. Alkylation Reactions of 3,5,6-Triphenyloxazinone (2)

Entry	RX	Product	Yield (%) ^a	% de
1	CH ₃ I	3a	99	>95
2	CH ₃ CH ₂ CH ₂ I	3b	82	>95
3	H ₂ C=CHCH ₂ Br	3c	95	>95
4	HC≡CCH ₂ Br	3d	98	>95
5^b	CH ₃ OCH ₂ Cl	3e	75	>95
6	BrCH ₂ CO ₂ CH ₂ CH ₃	3f	88	>95
7^c	C_4H_9I	3 g	96	>95

"Isolated yields. "Some starting material is recovered. "Since *n*-butyl bromide does not react, the corresponding iodide, prepared by treatment of the bromide with NaI in acetone, was used instead.

Scheme 2

about selective cleave of the benzylic C-O and C-N bonds in order to liberate the amino acid targets. Williams has developed both a dissolving metal reduction and a catalytic hydrogenolysis method for this purpose. Also, Remuzon showed that the chiral auxiliary in 3-alkyl-3,6-diphenyl-1,4-oxazin-2-ones is removed selectively by catalytic hydrogenolysis. Finally, Hegedus reported that *syn*-3,5,6-triphenyl-oxazinone isomers are selectively cleaved to form the amino acid in high yield under mild reductive conditions (1 atm of H₂, PdCl₂).

However, our attempts to use the hydrogenolysis process for removal of the chiral auxiliary present in tert-BOC protected 3-alkyl-3.5.6-triphenyloxazinones 3 gave none or only low yields (ca. 10%) of the desired products. We believed that this process might be more successful if it were applied to N-deprotected oxazinones. We first tried to remove the tert-BOC group by using TMSI in CH₂Cl₂, 4d but low yields (40% and 32%) were encountered for the allyl and propargyloxazinones, 3c and 3d. Moreover, deprotection of oxazinones 3e and 3f failed completely. In contrast, removal of tert-BOC group with TFA in dichloromethane^{4e} in all cases cleanly furnishes the deprotected 3-alkyl-3-phenyl-1,4-oxazin-2-ones 6 (Scheme 3 and Table 2). Importantly, hydrogenolysis of the deprotected oxazinones 6 under mild conditions (1 atm H₂, 0.5 equiv Pd(OAc)₂, 25 °C, 4h) affords the desired α -alkyl- α -phenylglycines 7 in moderate yields (Scheme 3 and Table 2). 11 The enantiomeric purity of (R)- α -methyl- α phenylglycine **7a** ($[\alpha]_D^{25}$ -94.5), generated by use of this route, was determined to be ca. 100% by comparison of its specific rotation to the reported value (lit. 6,12 [$-200^{20}_{\rm pl}$).

In conclusion, we have demonstrated that 3-alkyl-3-phenyl-oxazinones can be prepared in high yields and with high diastereomeric purities by alkylation reactions of chiral 3-phenyloxazinone. Also, removal of *tert*-BOC group follow-

Table 2. N-BOC Removal and Hydrogenolysis of 3

Entry	R	6 (%) ^a	7 (%) ^a
1	CH ₃	94	75
2	CH ₃ CH ₂ CH ₂	90	82
3	H ₂ C=CHCH ₂	90	82^{b}
4	$HC \equiv CCH_2$	93	75^{b}
5	CH ₃ OCH ₂	87	83
6	CH ₂ CO ₂ CH ₂ CH ₃	90	75
7	C_4H_9	92	71

 $[^]a$ Isolated yields. $^b{\rm Allyl}$ and propargyl groups are reduced to propyl group under this reaction conditions.

ed by selective hydrogenolysis is an effective procedure to efficiently transform 3-alkyl-3,5,6-triphenyloxazinones to the corresponding α -alkyl- α -phenylglycines without accompanying racemization.

Acknowledgment. This work was supported by the Brain Korea 21 Project in 2001.

References and Notes

- (a) Wipf, P.; Heimgartner, H. Helv. Chim. Acta 1988, 71, 258. (b)
 Karle, I. L.; Kaul, R.; Rao, R. B.; Raghothama, S.; Balaram, P. J.
 Am. Chem. Soc. 1997, 119, 12048. (c) Hatakeyama, S.; Yoshida,
 M.; Esumi, T.; Iwabuchi, Y.; Irie, H.; Kawamoto, T.; Yamada, H.;
 Nishizawa, M. Tetrahedron Lett. 1997, 38, 7887.
- (a) Ma, D.; Tian, H.; Zou, G. J. Org. Chem. 1999, 64, 120. (b) Ma, D.; Tian, H. J. Chem. Soc., Perkin Trans. 1 1997, 3493.
- For reviews on stereoselective synthesis of quarternary α-amino acids: (a) Cativiela, C.; Diaz-de-Villegas, M. D. *Tetrahedron: Asymmetry* 1998, 9, 3517. (b) Cativiela, C.; Diaz-de-Villegas, M. D. *Tetrahedron: Asymmetry* 2000, 11, 645. (c) Wirth, T. *Angew. Chem.*, Int. Ed. 1997, 36, 225.
- (a) Williams, R. M.; Im, M.-N. Tetrahedron Lett. 1988, 29, 6075.
 (b) Williams, R. M.; Sinclair, P. J.; Zhai, W. J. Am. Chem. Soc. 1988, 110, 482.
 (c) Williams, R. M.; Sinclair, P. J.; Zhai, D.; Chen, D. J. Am. Chem. Soc. 1988, 110, 1547.
 (d) Williams, R. M.; Hendrix, J. A. J. Org. Chem. 1990, 55, 3723.
 (e) Williams, R. M.; Im, M.-N. J. Am. Chem. Soc. 1991, 113, 9276.
- (a) Dellaria, J. F., Jr.; Santarsiero, B. D. *Tetrahedron Lett.* 1988,
 29, 6079. (b) Dellaria, J. F., Jr.; Santarsiero, B. D. *J. Org. Chem.* 1989, 54, 3916. (c) Ding, K.; Ma, D. *Tetrahedron* 2001, 57, 6361.
- Remuzon, P.; Soumeillant, M.; Dussy, C.; Bouzard, D. Tetrahedron 1997, 53, 17711.
- 7. Lee, S.-H.; Nam, S.-W. Bull. Korean Chem. Soc. 1998, 19, 613.
- 8. Lee, S.-H.; Ahn, D.-J. Bull. Korean Chem. Soc. 1999, 20, 264.
- 9. Spectroscopic data for (3R,5S,6R)-4-(tert-butyloxycarbonyl)-2,3,5,6-tetrahydro-3-methyl-3,5,6-triphenyl-1,4-oxazin-2-one (**3a**): mp 72-74 °C; $[\alpha]_0^{25} = -18.8$ (c 0.8, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.10 (m, 15H), 6.23 (d, J = 2.8 Hz, 1H), 5.28 (s, 1H), 2.39 (s, 3H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.72, 153.89, 142.35, 135.16, 134.80, 129.82, 128.32, 128.17, 128.13, 128.09, 127.74, 127.00, 126.81, 125.93, 81.64, 80.39, 64.73, 59.56, 27.83, 26.42.; IR (KBr) 3076, 2975, 1751, 1688, 1454, 1347, 1164, 1082, 880, 698 cm⁻¹; Anal. Calcd for C₂₈H₂₉NO₄: C, 75.82; H, 6.59; N, 3.16. Found: C, 75.81; H, 6.61; N, 3.21.
- Vernier. J.-M.; Hegedus, L. S.; Miller, D. B. J. Org. Chem. 1992, 57, 6914.
- 11. Spectroscopic data for (*R*)- α -methyl- α -phenylglycine (**7a**): $[\alpha]_D^{25}$ = -94.5 (c 0.1, 1N HCl); mp 260-262 °C; ¹H NMR (400 MHz, D₂O) δ 7.51-7.46 (m, 5H), 1.93 (s, 3H); ¹³C NMR (100 MHz, D₂O) δ 178.89, 140.31, 131.85, 131.84, 128.54, 65.69, 23.94; IR (KBr) 3438, 3057, 1625, 1589, 1392, 1360 cm⁻¹.
- 12. Achiwa, K.; Terashima, S.; Mizuno, H.; Takamura, N.; Kitagawa, T.; Ishikawa, K.; Yamada, S. *Chem. Pharm. Bull.* **1970**, *18*, 61.