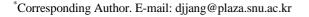
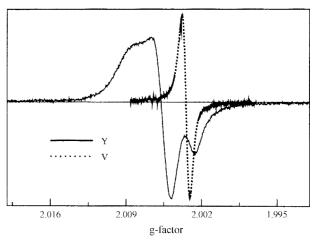
ESR Spectroscopic Evidence on the Formation of NaC_{60} and HC_{60} in Y Zeolitic Nanocavities

Oh-Hoon Kwon and Du-Jeon Jang*

School of Chemistry, Seoul National University, Seoul 151-742, Korea Received September 4, 2002

Key Words: C₆₀⁻, HC₆₀, NaC₆₀, Zeolites, ESR

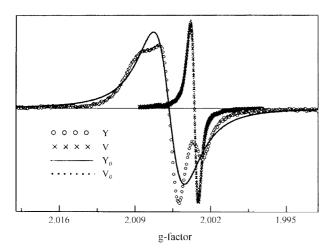

ESR spectra of C_{60} -encapsulated zeolites have been closely analyzed to show that NaC_{60} and HC_{60} , as well as C_{60}^- , form in the supercage of NaY, whereas only C_{60}^- forms in the channel of VPI-5. The hyperfine constants of the ESR spectra indicate that 3% and 9% of the unpaired spin densities of neutral NaC_{60} and HC_{60} molecular species are distributed to the Na and H atoms, respectively. Both species have large g_0 -values, owing to the paramagnetic contribution of H and Na atoms.


There has been a great deal of research on the physical and chemical properties of C_{60} and on the intercalation of C_{60} molecules in the cages and channels of zeolites. The incorporation of C_{60} molecules into the robust nanocavities of faujasite zeolites $^{10-14}$ is more interesting than the insertion into the extra large zeolitic pores because there are no physical barriers to immobilize C_{60} in the latter. The successful intercalation of fullerene molecules into the robust nanocavities of NaY, confirmed by 129 Xe NMR spectra, 13,14 has led us to generate radical anions and adducts of C_{60} .

 C_{60} is easily reduced to form anionic species, owing to its great electron affinity. C_{60} molecules often form charge transfer complexes with electron donating groups in solutions or polymeric films. ¹⁶⁻¹⁸ Extensive research has focused on spectroscopic, especially ESR, studies of fullerene anions or adduct radicals generated by various techniques. ¹⁹⁻²³

In the present study we show, based on the close reexamination of our recently reported ESR spectra, ¹³⁻¹⁵ the formation and characterization of NaC₆₀ and HC₆₀ in NaY pancesvities

The ESR spectra in Figure 1 show that while bare NaY and VPI-5 yield extremely weak broad ESR spectra, those introduced by C_{60} bring in new intense sharp spectra with g_0 -values of 2.0058 for NaY and 2.0034 for VPI-5. This indicates that the C_{60} adsorbed at the wall surface of NaY and VPI-5 nanocavities gives birth to C_{60}^- and that the produced radical species is stable enough to exist at the ground state. All the spectra of diffuse reflectance, static and time-resolved fluorescence, and transient reflectance, as well as all the kinetics of fluorescence and transient absorption in our recently reported papers, $^{13-15}$ show that a significantly large fraction of C_{60} molecules transforms into the ground-state stable radical anions of C_{60}^- in the nanocavities of faujasite and VPI-5 zeolites.


Figure 1. ESR spectra of C₆₀-introduced NaY (Y) and VPI-5 (V).

Although the g_0 -values from Figure 1 are typical values for organic radicals, they are significantly larger than those $(2.0006,^{19} 2.001,^{20} 1.998^{21})$ of C_{60}^- in solutions. The large g₀-values are considered to arise from the polar environment. 13-15,23,24 The earlier reported small g_0 -values (~1.9994) in faujasite zeolites^{11,12} are thought to result from the anions located at the external surface rather than inside the nanocavities. The ESR spectrum of C₆₀-intercalated NaY is too multiplexed to have originated from a single species in a similar environment. The spectrum looks like a free organic radical signal superimposed with polarized organic radical signals split into multiplets by neighboring nuclear spins. We suggest that the radical anions formed in NaY nanocavities exist in different environments. Some C₆₀⁻ in NaY might have protons or sodium ions nearby. A proton is available to form a protonated species^{25,26} since dehydrated samples still contain hydrated water molecules.²⁷

The spectra in Figure 1 have been iteratively fitted with the first derivative curves of Lorentzian line-shape functions (Eq. (1)), using the parameters in Table 1 in order to understand the nature of radical species present in zeolitic nanocavities.

$$\frac{f}{\pi} \left[\sum_{m=-l}^{m=l} (4 - 2|m|) \right]^{-1} \sum_{m=-l}^{m=l} \left[\frac{(4 - 2|m|) \Delta g_{1/2}}{(g - g_0 - mg_a)^2 + \Delta g_{1/2}^2} \right]$$
(1)

The *I* in Eq. (1) is the nuclear spin (quantum number) that

Figure 2. Single-Lorentzian curves simulated using the parameters in Table 1 to fit the spectra in Figure 1.

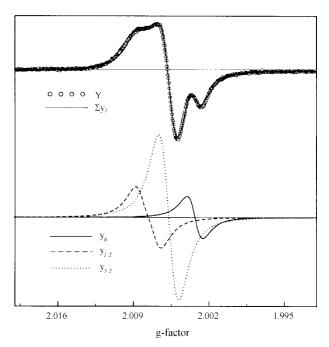

Table 1. Spectral parameters of the simulated curves a in Figures 2 and 3

Figure	Curve	f^b	I	g_0	$\Delta g_{1/2}$	$\Delta H_{1/2}^{c}$	g_a	\mathbf{a}^d	$\rho^{\!\scriptscriptstyle\ell}$
2	\mathbf{Y}_0	1	0	2.0058	0.0025	0.45	_	_	_
	V_0	1	0	2.0034	0.0007	0.12	_	_	_
3	Σy_I	1	0	2.0058	0.0023	0.41	_	_	_
	\mathbf{y}_0	0.09	0	2.0033	0.0013	0.23	_	_	_
	y 1/2	0.32	1/2	2.0076	0.0013	0.23	0.0012	0.2	0.09
	y _{3/2}	0.59	3/2	2.0057	0.0013	0.23	0.0004	0.07	0.03

^aSimulated using the first derivatives of Eq. (1). ^bFractional abundance. ^cHalf width at the half maximum in mT converted from $\Delta g_{1/2}$. ^dHyperfine constant in mT converted from g_a . ^eCalculated using the McConnell equation (a = Qr) with Q = 2.25 mT. ²⁸

gives birth to a hyperfine structure. The spectrum of C_{60} -introduced NaY hardly fits a single Lorentzian curve, whereas that of C_{60} -introduced VPI-5 does well (Figure 2). Furthermore, the fitted single Lorentzian curve, Y_0 , has a very broad spectral width compared with that of V_0 (Table 1). However, the multiple Lorentzian curve of Σy_I , composed of three different simulated curves, fits quite well into the spectrum Y (Figure 3). All of y_0 , $y_{1/2}$, and $y_{3/2}$ were simulated using the same hyperfine line width.

While we attribute the singlet Lorentzian curve of y_0 to C_{60}^- not having an associated cation, we ascribe the doublet and quartet hyperfine structures of $y_{1/2}$ and $y_{3/2}$ to HC_{60} and NaC₆₀, respectively. Of special note is that the g_0 -value of y_0 is very similar to that of V₀. Since the microenvironment of C₆₀ in aluminophosphate VPI-5 is uniform, V without a hyperfine structure is very isotropic and narrow in line width, and it shows a low g_0 -value because C_{60}^- in VPI-5 rarely has an associated cation. The component y₀ is found to be spectrally similar to V₀ as the microenvironment of some C₆₀⁻ in Na⁺-exchanged aluminosilicate NaY is similar to that of C_{60}^- in VPI-5. The C_{60}^- ions giving y_0 are not associated with cations directly. However, the line width of y_0 , which is larger than that of V_0 , suggests that NaY cages are still more heterogeneous than VPI-5 channels as known.¹¹ The hyperfine coupling strength of HC₆₀ is larger by a factor

Figure 3. Multiple-Lorentzian curve (Σy_I) composed of y_0 , $y_{1/2}$, and $y_{3/2}$ to fit Y. The parameters used are described in Table 1.

of 3 than that of NaC60, indicating that NaC60 has significantly larger ionic bond character than HC₆₀. The 9% and 3% of the unpaired spin densities of HC₆₀ and NaC₆₀ molecules are distributed to the H and Na atoms, respectively, according to the McConnell equation, using $Q = 2.25 \text{ mT.}^{28}$ Of note is that the g_0 -value increases as the hyperfine coupling constant increases in the order of y_0 , $y_{3/2}$, and $y_{1/2}$. The negative shielding effect by the paramagnetic contribution of unoccupied orbitals is known to enhance the g_0 value. Thus, the g_0 -value increment is considered to have resulted from enhanced unoccupied orbital contribution with the hyperfine constant increase. The fractional abundance in Table 1 indicates that adducted molecular species of NaC₆₀ and HC₆₀ are dominant in NaY supercages over the anionic species of C₆₀⁻. We have shown here that ground-state stable NaC₆₀ and HC₆₀, as well as C₆₀, can be isolated in NaY nanocavities. The respective ESR spectra of both molecular species have been well characterized without being perturbed by the thermal motion of surrounding solvent molecules because of their isolated environment. Because reducing agents were not employed, the spectra were measured without being contaminated by undesired radical products. The ESR spectra are free from concerned dimeric species²⁹ because only one C₆₀ molecule can be intercalated into one supercage of NaY.

In summary, molecular species of NaC₆₀ and HC₆₀ have been found to exist in NaY nanocavities. Furthermore, both species show well-defined ESR spectra because of their isolated environment. The 9% and 3% of the unpaired spin densities of HC₆₀ and NaC₆₀ molecular species were found to locate at the H and Na atoms, respectively. Both species have large g_0 -values, owing to the paramagnetic contribution of H and Na atoms.

Experimental Section

Highly pure NaY and VPI-5 were synthesized, dried in a vacuum, and dehydrated at 400 °C for 12 h. Dehydrated NaY with 1.0 mmol of the supercage was mixed with 25 μ mol of C₆₀ in a quartz tube. The tube was evacuated, sealed, and maintained at 650 °C for 72 h to make C₆₀ sublime and diffuse uniformly into zeolite supercages. 13,14 0.2 g of dehydrated VPI-5 was added to 20 mL of benzene containing 0.02 g of C₆₀ and stirred at 50 °C for 24 h. C₆₀-introduced VPI-5 was filtered off, washed thoroughly with benzene to remove any surface species, and dried in a vacuum for 24 h. X-ray diffraction confirmed that the framework structures of NaY and VPI-5 did not change during dehydration and intercalation. The successful intercalation of C₆₀ was confirmed using 129Xe NMR spectroscopy. 13,14 ESR derivative curves were measured at the X-band, using an ESR spectrometer (Bruker, ESP 300) with the frequency of 9.7 GHz.

Acknowledgment. The center for Molecular Catalysis and Brain Korea 21 Program supported this work.

References

- Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. *Nature* 1985, 318, 162.
- Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
- Hare, J. P.; Kroto, H. W.; Taylor, R. Chem. Phys. Lett. 1991, 177, 394.
- Reilly, P. T. A.; Gieray, R. A.; Whitten, W. B.; Ramsey, J. M. J. Am. Chem. Soc. 2000, 122, 11596.
- 5. Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695.
- 6. Chen, X. L.; Jenekhe, S. A. Langmuir 1999, 15, 8007.
- Lambrabte, A.; Janot, J.-M.; Elmidaoui, A.; Seta, P.; de Ménorval, L.-C.; Backov, R.; Rozière, J.; Sauvajol, J.-L.; Allègre, J. Chem.

- Phys. Lett. 1998, 295, 257.
- Gu, G.; Ding, W.; Cheng, G.; Zhang, S.; Du, Y.; Yang, S. Chem. Phys. Lett. 1997, 270, 135.
- Hamilton, B.; Rimmer, J. S.; Anderson, M.; Leigh, D. Adv. Mater. 1993, 5, 583.
- Sastre, G.; Cano, M. L.; Corma, A.; Garcia, H.; Nicolopoulos, S.; González-Calbet, J. M.; Vallet-Regí, M. J. Phys. Chem. B 1997, 101, 10184.
- Gu, G.; Ding, W.; Cheng, G.; Zang, W.; Zen, H.; Du, Y. Appl. Phys. Lett. 1995, 67, 326.
- Keizer, P. N.; Morton, J. R.; Preston, K. F.; Sugden, A. K. J. Phys. Chem. 1991, 95, 7117.
- Kwon, O.-H.; Yoo, H.; Bo, T.; Ryoo, R.; Jang, D.-J. J. Phys. Chem. B 2001, 105, 4195.
- Kwon, O.-H.; Park, K.; Jang, D.-J. Chem. Phys. Lett. 2001, 346, 195
- 15. Kwon, O.-H.; Yoo, H.; Jang, D.-J. Eur. Phys. J. D 2002, 18, 69.
- 16. Wang, Y. J. Phys. Chem. 1992, 96, 764.
- 17. Greany, M. A.; Gorun, S. M. J. Phys. Chem. 1991, 95, 7142.
- 18. Dimitrijevic, N. M.; Kamat, P. V. J. Phys. Chem. 1992, 96, 4811.
- Kukolich, S. G.; Huffman, D. R. Chem. Phys. Lett. 1991, 182, 263.
- Dubois, D.; Jones, M. T.; Kadish, K. M. J. Am. Chem. Soc. 1992, 114, 6446.
- Dubois, D.; Kadish, K. M.; Flanagan, S.; Haufler, R. E.; Chibante,
 L. P. F.; Wilson, L. J. J. Am. Chem. Soc. 1991, 113, 4364.
- Cândida, M.; Shohoji, B. L.; Luisa, T. M.; Franco, T. M. B.;
 Celina, M.; Lazana, R. L. R.; Nakazawa, S.; Sato, K.; Shiomi, D.;
 Takui, T. J. Am. Chem. Soc. 2000, 122, 2962.
- Govindaraj, A.; Nath, M.; Eswaramoorthy, M. Chem. Phys. Lett. 2000, 317, 35.
- Uppili, S.; Thomas, K. J.; Crompton, E. M.; Ramamurthy, V. Langmuir 2000, 16, 265.
- Klemt, R.; Roduner, E.; Fischer, H. Chem. Phys. Lett. 1994, 229, 524.
- Morton, J. R.; Negri, F.; Preston, K. F. Phys. Rev. B 1994, 49, 12446.
- 27. Lee, S.; Hwang, H.; Kim, P.; Jang, D.-J. Catal. Lett. 1999, 57, 221.
- 28. Gordy, W. *Theory and Applications of Electron Spin Resonance*; John Wiley and Sons: New York, 1980.
- 29. Reed, C. A.; Bolskar, R. D. Chem. Rev. 2000, 100, 1075.