Dipole Moments for Square Pyramidal Complexes

D (in Table 3) are lower than those of Pt-catalysts without
boron on the same supports (in Table 2), the both boron-
promoted catalysts exhibit high tolerance against lead poison-
ing. The exact role of these base metals in the catalysis is not
understood yet, but boron seems to be a promising candidate
promoter for lead tolerant catalyst if the initial activity can
be raised.
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Calculation of the Dipole Moments for Square Pyramidal Complexes

Sangwoon Ahn*, Geun Yong Yuk, and Euisuh Park
Department of Chemistry, Jeonbug National University, Jeonju 520, Received June 3, 1985

Modified technique in calculating the dipole moments for square pyramidal complexes has been developed and then the
dipole moments for bisacetylacetonato(oxo)vanadilim(IV) complexes are calculated, adopting this approach. The calculated
dipole moments for bisacetylacetonato(oxo)vanadium(IV) in benzene and bisacetylacetonato(oxo)vanadium in dioxane solu-
tions are in agreement with the observed values. The calculated dipole moments of bisacetylacetonato(oxo)vanadium(IV) in
dioxane solution is slightly higher than that of bisacetylacetonatotoxo)vanadium(IV) in benzene. Such a result may suggest
that bisacetylacetonato(oxo)vanadium(IV) interact with dioxane molecule to form bisacetylacetonato(oxo)vanadium(IV)-
dioxane adduct. This calculated dipole moments are also in agreement with the experimental results.

Introduction

Over the twenty years, a great deal of interest has been
focussed on the measurement of the dipole moments for tran-
sition metal complexes in investigating their geometric struc-
ture in inert or aprotic solvent solutions.* A method for
calculation of the electric dipole moments for molecules con-
taining rotating polar groups has been proposed by Gilman,?
modifying the vector method of Wilcox* and the mean square
moments for organic molecules containing a single rotatable
polar group as well as one or more fixed groups were cal-
culated to obtain information for the absence of free rotation.
Recently this method was applied to the calculation of the
dipole moments for CL,Sn(CH,CL),.. type complexes.® The
vector method of Wilcox and Gilman can only be applied to
the calculation of the dipole moments for the molecules with
both fixed and rotating polar groups. To overcome such the
shortcoming, a new approach in calculating the dipole mo-
ments for transition metal complexes has been proposed. This
approach was however applied to caiculate the dipole moments
for octahedral, square planar and tetrahedral complexes.

To determine the theoretical dipole moments for square
pyramidal complexes such as bisacetylacetonato(oxo)vana-

dium(IV), we may modify the previous three assumptions,*
which has been made to attempt to calculate the dipole
moments for transition metal complexes, as follows;

(1) The only valence electrons of ligands, which take part
in valence bond with the central metal ion, are assumed to
be contributed to the nuclear part of the dipole moments for
transition metal complexes.

(2) The atoms that bond directly with the metal ions and
are located at the end of the ligands are assumed to be the
dominant contribution to the dipole moment for trapsition
metal complexes. We therefore adopt the modified linear com-
bination of valence basis sets of the transition metal and
ligands.

The purpose of this work is to perform example calcula-
tions of the dipole moments for square pyramidal complexes,
adopting the modified two assumptions. As far as we are
aware, no atempt has been made to determine the theoretical
dipole moments for square pyramidal transition metal com-
plexes.

Theory

For example calculation of the dipole moments for square
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pyramidal complexes, we choose bisacetylacetonato(oxo)-
vanadium(IV). These complexes were known to interact with
amines to form adducts in which the vanadium has a roughly
octahedral coordination sphere.”® It was however reported
that with oxygen containing ligands, the evidence for such
complexes formation is less certain though Nyburg et al.°
isolated the complex {VO(acac),}; (dioxane) in which a dioxane
molecule bridges two VO (acac), groups:

In this work, we assume that bisacetylacetonato(oxo)
vanadium(IV) interact with oxygen containing ligands to form
adducts. This assumption may be justified by comparing the
calculated dipole moments with the experimental values. We
also assume that bisacetylacetonato{oxo)vanadium(IV) adducts
with dioxane have C,, symmetry. The transformation scheme
of bisacetylacetonato(oxo)vanadium is listed in Table 1. As
the transformation properties of the central metal ion and
ligands are known, the valence basis sets of the central metal
ion can be combined with the ligands basis sets having the
same transformation properties.

The approximate molecular orbitals obtained may be
represented, in general, using group theoretical notation by

P, (MO>=N1 [a¢I? (M)+ﬁ:H (l)]

OrMO)=N*(a*I; M)+8.*1 (1)) (1)
where
N,
=(a! +2a,8, <L ML (>4 8 <L (WL (1)>) " F
N‘i
= (al* +2e28*<L M) | (D> +AE<L ) IL (1)>)"F

(2)

Here it is necessary to mention that we adopt ¢ bonding ligand
orbitals as a linear combination of ns and np, orbitals of the
same ligand atoms as

o (l)=sing (ns) £ cos @ (np.) (3)
where n=2,3 or 4. The degree of hybridization is calculated
by minimizing the quantity VSIP (8)/S(8), where S(8) is the
overlap integral of atomic orbitals of the central vanadium (I'V)

atom with ligand hybrid orbitals of varying values of 8, while
VSIP (0) is the valence state ionization potential of the same

Table 1. Orbital Transformation scheme for the Distorted Square
Pyramidal Bisacetylacetonate

L Ia I
a(l)  3d,+ds o
a2 4s-3d, S lotoit artal)
a{3) 4p; o4
e 3d,z, 3dy. ms (2ps, 2py)
4p,, Apy Vl'_z‘(a. -03), % (02— 04)
b, 3d,_y —%—(a,—a,-*—a,— a,)
b, 3.,
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ligand hybrid orbital.* The angles at which the minimum of
VISP (8) occurred are listed in Table 2.

The molecular orbital energies and the corresponding
eigenvector are obtained by solving the following secular
equation,

Hi; -G E)=0 (4)

where G, is the group overlap integral. Since we adopt two
assumptions in calculating the dipole moments for square
pyramidal complexes, the diagonal matrix elements for
vanadium (IV) may be estimated from the negative values of
the valence state ionization potential of valence orbitals in the
following manner,

H,=N/*H] (5)

Here H., is the negative value of the valence state ionization
potential of valence orbital and N; is the normalization cons-
tant which can be calculated by

Ni=(Ci+ £2C,C, 8.1 F ®)

Table 2. Degree of Hybridization

Complexes L sin® cos§ (degree)
VO{acac), (planar) a, (plane)  0.3746 0.9272 22
a, (z axis)  0.3497 0.9397 20
VO(acac), (distorted) a, 0.5726 0.8192 35
b, 0.7547 0.6561 49
e 0.9744 0.2250 77
a, (z axis) 0.5150 0.8572 31
VO(acac),H,0 a, (z axis) 0.5592 0.8290 34
a, (-z axis) 0.9135 0.4067 66
VO(acac), Cl a, (z axis) 0.5150 0.8572 31
a. (-z axis) 1 0 90
VO(acac), Br a, (z axis) 0.5150 0.8572 31
a, (~z axis) 0.9703 0.2419 76
VO(acac),-CH,OCH; a, (z axis) 0.5592 0.8290 34

a, (-z axis) 0.9205 0.3907 67
a, (z axis) 0.5150 0.8572 31
a, (-z axis) 0.9135 0.4067 66

VO(acac),- C H,0,

-20

I:}n) 4 (M0) L-(l)

a) VO(acac),

Figure 1. The energy level diagram for bisacetylacetonato-
(oxo)vanadium(IV).
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Table 3. Group Overlap Integrals and Molecular Orbital Energies
(a) VO(acac),

Sangwoon Ahn et al.

I;(M0O) Gy Edev) a; B, E* (ev) a B.“.
a, (1) 0.1271 -30.52 -0.2576 0.9747 -8.21 0.9340 0.3795
a, (2) 0.1137 -26.99 0.3688 0.9365 -8.43 0.9724 ~0.2599
b, 0.1971 -31.41 0.5386 0.8662 -6.63 0.9554 ~0.3573
ex 0 -11.60 0 0
e (x) 0.2842 -33.53 0.5557 0.5826 -1.73 1.0042 ~-0.2819
e 0.2842 -33.53 0.5557 0.8826 -1.73 1.0042 -0.2819
b, 0 -11.60 0 0

(b) distorted VO(acac),
I;(MO) G.‘j Efev) a; R, E* (ev) a* B*
a, (1) 0.3060 —44.26 -0.3976 0.9722 -4.16 0.8039 0.6761
a, (2) 0.0938 -25.06 0.2351 0.9765 -9.35 0.9942 -0.1428
b, 0.1789 -30.38 0.5114 0.8784 -7.19 0.9557 -0.3460
ex 0 -11.60 0 0
e () 0.2793 -33.42 0.5489 0.8851 -1.82 1.0032 -0.2798
e 0.2793 -33.42 0.5489 0.8851 -1.82 1.0032 -0.2798
b, 0 -11.60 0 0

(c) VO(acac),CH,0CH;,
E (MO) Gij G.'k E,»(CV) a; Bi Yi E-"l (EV) ai* K.'* Y.'*
a, (1) 0.3331 -45.91 -0.4039 0.98065 -3.36 0.7901 0.7075
a, (2) 0.2852 -35.24 -0.2966 1.0029 -1.57 0.8742 0.5696

a, (3) 0.1137 -26.87 0.3670 0.9370 -8.32 0.9730 -0.2576

b, 0.1969 -30.86 0.5297 0.8716 -6.92 0.9589 -0.3477
ex 0 -11.60 0 0

e (x) 0.0511 0.0649 ~13.74 -0.0930 0.1811 0.9737 -3.5758 -0.1410 0.9765 -0.1275
e(® 0.0511 0.0649 -13.74 -0.0930 0.1811 0.9737 -3.5758 -0.1410 0.9765 -0.1275
b, 0 ~11.60 0

(d) VO(acac).H,O
I (MO) G,-_, G Edev) a; iy Yi E* (ev) a’* R.* Y.'*
a, (1) 0.3331 -46.24 —-0.4035 0.9808 -3.38 0.7904 0.7072
a, (2) 0.2852 -35.45 -0.3011 0.9990 -1.71 0.8716 0.5735
a, (3) 0.1137 -26.79 0.3563 0.9413 -8.48 0.9757 -0.2470
b: 0.1969 -31.06 0.5336 0.8693 -7.07 0.9573 -0.3520
ex 0 -11.60 0 0
e (x) 0.0511 0.0649 -13.91 -0.0890 0.1812 0.9741 -3.61 -0.1430 0.9763 -0.1270
e 0.0511 0.0649 -13.91 -0.0890 0.1812 0.9741 -3.61 -0.1430 0.9763 -0.1270
b, 0 -11.60 0 0

(e) VO(acac),C.H.O,
;(MO) G, G Edev) a; R, Yi E* (ev) a* R.* v
a, (1) 0.3060 -43.77 -0.3948 0.9734 -4.05 0.8059 0.6737
a, (2) 0.2852 -35.49 -0.2951 1.0007 -1.53 0.8750 0.5683
a, (3) 0.1137 -28.63 0.4439 0.9034 -7.27 0.9480 -0.3383
b, 0.1969 -30.93 0.5286 0.8723 -6.91 0.9593 —-0.3465
€x 0 -11.60 0 0
e (x) 0.0511 0.0649 —-14.02 -Q.1116 0.2184 0.9641 ~3.55 -0.0833 0.9779 -0.1628
ey 0.0511 0.0649 -14.02 -0.1116 0.2184 0.9641 -3.55 -0.0833 0.9779 -0.1628
b, 0 -11.60 0 0
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I;(MO) Gy G Ef(ev) a; R, Y E* (ev) a* R.* v
a, (1) 0.3060 ~42.54 -0.3867 0.9766 -3.74 0.8114 0.6670
a, (2) 0.0401 -22.99 -0.0622 0.9989 -4.31 0.9956 0.1022
a, (3) 0.1137 —-26.66 0.3442 0.9458 -7.99 0.9788 -0.2344
b, 0.1969 -30.91 0.5280 0.8727 -6.89 0.9596 -0.3458
ex 0 -11.60 0 0
e (x) 0.1434 0.1547 -16.78 -0.1867 0.4090 0.8847 -2.28 -0.2031 0.9266 -0.2915
ey 0.1434 0.1547 -16.78 -0.1867 0.4090 0.8847 -2.28 -0.2031 0.9266 -0.2915
b, 0 -11.60 0 0
(g) VO(acac), Br
I;(MO) Gg G E(ev) a; 8, Y: E* (ev) a* 8> Yi'
a, (1) 0.3060 -43.03 -0.3883 0.9766 -3.90 0.8064 0.6740
a, (2 0.4078 -45.98 -0.5013 0.9738 -2.50 0.6847 0.8548
a, (3) 0.1137 -26.59 0.3522 0.9429 -8.27 0.9768 -0.2427
b, 0.1969 -30.79 0.5297 0.8717 -6.90 0.9589 -0.3477
ex 0 -11.60 0 0
e (x) 0.1365 0.1746 -19.93 -0.4254 0.2867 1.1144 -3.57 -0.3979 1.1049 -0.3547
e (y) 0.1365 0.1746 -19.93 -0.4254 0.2867 1.1144 -3.57 -0.3979 1.1049 -0.3547
b, 0 -11.60 0 0
Table 4. The Calculated Dipole Moments for Square Pyramidal Complexes
Complexes R R u® (caled.) u® (expl.)
VO(acac), 1.56 3.337 3.10,° 3.24,* 3.31
VO(acac), (distorted) 1.67 1.97° 2.938
VO(acac), CH,;0CH, 1.56 2.40 3.819
VO(acac),*H,0 1.56 2.40 1.916
VO(acac),- C.H.0, 1.67 2.40 3.704 3.75,° 3.89*
VO(acac), Cl 1.67 2.215 2.989
VO(acac), Br 1.67 2.362 2.775

“The bond distance for V-O in equatorial bonds for the square pyramidal vanadyl bisacetylacetonate. Here R is the bond distance of V-0

bond for z axis, and R’ is the those of V-X for  z axis.

and the off-diagonal matrix elements are calculated by using
Wolfsberg and Helmholtz approximation.'®

H,= ;*F G, (N/*Hi +N/*H,}) (7)

where F=1.80. Therefore, for hybrid orbitals of ligands, the
diagonal matrix elements are estimated from*
H.,
= —{sin’@ (N;/*-VSIP of ns)+ cos*8 (N;*-VSIP of np,)}
(8)
Group overlap integrals and molecular orbital energies for
square pyramidal complexes are listed in Table 3. The energy

level diagrams for bisacetylacetonato(oxo)vanadium(IV) com-
plexes are also represented in Figure 1.

The general formulas of the electric dipole moment matrix
elements for bonding and antibonding molecular orbitals are

<@, MO)|r|9,MO}>=N}(2a,8,<In M}ir|T; (1) >

*The unit of the dipole moment is debye.

+B:<N(DIrl L (1) >)
<GFrMO)|r|@ofMO)>=NF2aB2<I, M) Ir|L (1)>
+_ﬂi"<1"z(l)|,r|11(l)>] (9)
Now we apply the coordinate transformation scheme to the
molecular orbitals of square pyramidal complexes and then

calculate the dipole moments for bisacetylacetonato(oxo)-
vanadium(IV) complexes using the following formula,

p=-202<8,MO)Ir| &, (M0)>’+ezkn,‘R, (10)

where R, is the distance from the central metal ion to Kth
nucleus, and n, the number of valence electrons. The cal-
culated dipole moments for bisacetylacetonato(oxo)vanadium-
(IV) complexes are listed in Table 4.

Results and Discussion

Bisacetylacetonato(oxo)vanadium(IV) complexes have in-
creasingly been investigated experimentally and particular in-
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terests were on the electronic spectral studies to interpret the
optical and other data.!? The detailed molecular orbital
treatments for square pyramidal oxovanadium (IV) complexes
has been suggested that these complexes may have C,,
symmetry.'3-'¢

As shown in Table 4, the calculated dipole moments for
VO(acac), complex in benzene solution, using equation (10),
is in agreement with the experimental dipole moments. Small
difference between the theoretical dipole moment and the
observed value may however be due to the solvent effect on
the dipole moments'’ but the experimental value in dioxane
solution is slightly higher than that of benzene solution. Table
4 also shows that the calculated dipole moments for adducts
of bisacetylacetonato(oxo)vanadium(I'V) with dioxane in diox-
ane solution is in agreement with the observed values. This
calculated results may suggest that bisacetylacetonato(oxo)-
vanadium(IV) interact with oxygen-containing ligand to form
adducts and the results of Table 4 may also suggest that this
calculation method of the dipole moments for square pyramidal
complexes is more superior than other approaches we have
adopted in calculating the dipole moments for transition metal
complexes as far as the calculation of the dipole moments of
square pyramidal complexes is concerned. This work may be
applied to calculate the dipole moments for square pyramidal
complexes and may predict the geometric structure in inert
or aprotic solvent solutions.
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A reduced condition for liquid-gas phase transition from the singularity of compressibility is derived using diagrammatic
approach and is examined in the hard sphere system. The condition turns out that the Percus-Yevick and the Hyper-Netted-
Chain approximation never conceive the idea of phase transition, and explains that the liquid-gas transition does not exist
in hard sphere system. The solid—fluid transition is considered on the viewpoint of correlation function and diagrammatic analysis.

Introduction

Knowledge of the radial distribution function g(») is the
essential prerequisite for a complete static description of
homogeneous classical liquids whose molecules are taken to
interact through effective two-body forces. The radial
distribution function is expressed from the diagrammatic
analysis® of density expansion with three unknowns, as is given

by
gr)=eP“" {I+N @)} +e " Z (r) (1-a)
Z(r)=e™n BN {14+N(r)} (1-b)

where M) is analyzed from the nodal group of which elements
have at least one nodal point, E(7) is from the cross-bridged
group which has no nodal point, 8is 1/kT and #(7) is the pair
potential. These functions also satisfy following equations



