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In quantum dynamics of many-body systems, to identify the Hamiltonian becomes more difficult very rapidly
as the number of degrees of freedom increases. In order to simplify the dynamics and to deduce dynamically
relevant Hamiltonian information, it is desirable to control the dynamics to lie within a reduced space. With a
judicious choice for the cost functional, the closed loop optimal control experiments can be manipulated
efficiently to steer the dynamics to lie within a subspace of the system eigenstates without requiring any prior
detailed knowledge about the system Hamiltonian. The procedure is simulated for optimally controlled
population transfer experiments in the system of two degrees of freedom. To show the feasibility of steering
the dynamics to lie in a specified subspace, the learning algorithms guiding the dynamics are presented along
with frequency filtering. The results demonstrate that the optimal control fields derive the system to the desired
target state through the desired subspace.
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Introduction

During the last decade, quantum molecular control has
been studied for designing optical control field to actively
manipulate quantum dynamical system.1-3 Similar logic has
been applied to designing laser pulses to drive other
dynamical processes including solid-state applications.4

Optimal control theory (OCT) lends itself to a systematic
search for the control functions or parameters to achieve a
prescribed physical goal while also avoiding deleterious
processes. However, especially for polyatomic molecules,
this open-loop OCT has a number of serious problems: (a)
the Hamiltonian is only approximately known, (b) the design
equations for complex systems will likely call for approxi-
mate solutions, and (c) the field designs produced in the
laboratory may have systematic and random errors.5 Thus,
this situation points to the need for closing the loop in the
laboratory by Optimal control experiment (OCE).6 

The OCE search the optimal control field by learning from
the previous trials through closed-loop procedures until one
that derives the system to the desired target is achieved while
also avoiding deleterious processes. At each loop in the
search, the measured outcomes from previous trials are used
to select the new test field using an optimization procedure
based on a genetic7,8 or gradient algorithm until sufficient
control is achieved. Such a method is appealing because it
requires no previous information about the system Hamiltonian,
although convergence would surely be improved by utilizing
available Hamiltonian structure. Thus, the OCE closed-loop
process eliminates issues of Hamiltonian uncertainty. Also,
the OCE does not need to solve Schrodinger's equation
because of the actual molecules and their dynamics are part
of the loop. The closed loop OCE technique can be applied
to seek control of systems having an arbitrary number of the
degrees of freedom. 

The successful OCE control has been carried out in a wide
variety of systems with the goal of generating a particular
optical pulse shape recently.9-17 Wilson et al. manipulated
the emission of a laser dye using laser chirp control knobs,10

and Gerber et al. used laser phase modulation to control the
ratios of the products in the fragmentation and ionization of
two organometallic compounds.11 The experiments by
Meshulach and Silberberg demonstrate that OCE can be
effective for learning two-photon atomic level population
control.14 

However, in practice, application of the closed-loop
learning procedure become more difficult very rapidly as the
number of degrees of freedom increases by the difficulty of
finding a global minimum. Thus, it is of considerable
interest to develop a constrained OCE procedure, which
steers the dynamics to lie in a specified subspace or on a
subset of the most desired subsystem Hamiltonian. For
inversion of molecular Hamiltonian information, it may also
be very attractive to use the closed loop learning procedure.18

The difference between OCE and the inversion procedure
are as in the case of inversion, the Hamiltonian such as the
dipole moment or the potential energy surface are not known
beforehand. Nevertheless, the closed loop OCE procedure
appears feasible for learning about molecular Hamiltonians
and Figure 1 illustrates the components involved. In order to
deduce dynamically relevant Hamiltonian information, it is
desirable to control the dynamics to lie within a reduced
domain. After the i-th loop, the molecular observation
updates the inverted Hamiltonian informations, as well as
provides an estimate for the reduced domain stability where
the Hamiltonian information may be reliably extracted. The
learning algorithm generating the laser field operates to
ensure that dynamics remain in the reduced domain and the
stability of the domain can control the quality of the inverted
Hamiltonian informations. 
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A recently introduced tracking approach can achieve a
form of reduced space dynamics by a priori specifying an
objective trajectory track as the expectation values of a
chosen operator.19 The technique deduces the control electric
field such that the system evolution exactly follows the
temporal track. This approach has certain attractive features,
but presently the choice of the expectation values is a heavy
demand calling for the considerably physical insight. Another
approach of a reduced description of the dynamics focuses
on a subset of the most important degrees of freedom and
treats the other degrees of freedom as a background to which
the subset is coupled.20 However, this reduction is useful
only if it suggests accurate approximations which permit
analysis of the dynamics of the subsystem with weak
perturbations from the background. 

In this paper, we introduce a constrained OCE that greatly
simplifies the dynamics without a priori specifying an
trajectory track. Only minimal information is needed about
the system states or other characteristics to specify a
subspace of interest for the dynamics to reside in. This
freedom of manipulation permits the actual dynamical path
to evolve unconstrained within the subspace. The price paid
for seeking this reduction of the dynamics is the need to
perform an extra set of temporal observations as data for the
learning algorithm to guide the dynamics so that it stays
within the subspace. This paper will introduce OCE reduced
space dynamics through simple modifications of the cost
functional as part of the learning algorithm. In Sect. II, the
OCE formulation for the steering the dynamics within
reduced space is presented, and section III demonstrates
simulated application of this algorithm to complex systems
and illustrates a tailored cost functional to steer dynamics
that greatly simplifies the complexity of the system
Hamiltonian. Closed-loop process for learning molecular
Hamiltonian is discussed. 

Reduced Space Optimal Control Experiment 

To steer the dynamics to lie within a specified subspace by
tailored cost functionals, we simulated constraint OCE
procedure involving population transfer in multi-level
quantum systems. The physical system has N levels radia-

tively connected by up to L transitions. The Hamiltonian that
describes these N eigenstates of the molecule is

(1)

where Ei is the energy of eigenstate . The interaction
between the molecule and the field is described by the time
dependent Schrodinger equation with the initial wave-
function  containing all population in the ground
state,

(2a)

(2b)

and the control field is a modulated Gaussian given by, 

(3)

where the ωl are the transition frequencies of the system, and
the Al and θl are the corresponding amplitudes and their
associated phases, respectively. In the present closed loop
learning control experiments, it is desired to pump all
population from the ground state to the i-th population  at
the target time T , in an efficient manner by eliminating the
insignificant field components and by guiding the dynamics
to lie in a specified subspace. Also, the cost functional
guiding the experiments can contain only quantities which
may be explicitly measured. Thus, the physical objective
functional is specifically given by,

J[Ψ(t), ε(t)] = Φ(T) + L1 + L2 + L3 (4)

with

Φ(T) = (5a)

(5b)

(5c)

(5d)

The learning algorithm in the closed loop works to find a
control field ε(t) that minimizes the objective functinal J.
The error function Φ(T) in Eq. (5a) serves to transfer the i-th
state actual population Pi(t) toward the desired population

 by the field at the target time T. While Eq. (5b) and Eq.
(5c) contain the positive field cost functions which is
dependent on the amplitudes and phases of the field. These
terms minimize all the amplitudes and phases of the field
components that have little significance for the controlled
dynamics. In general, it is not necessary to have all
frequency and phase components for achieving control,
especially, for steering the dynamics to lie in a specified
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Figure 1. Closed loop process for learning control of molecular
Hamiltonian information. The learning algorithm serves the
purpose of guiding the control field to maintain the dynamics in a
specified subspace as well as to control the inversion quality of the
Hamiltonians by the domain stability.
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subspace. One or more frequencies might have little effect
on the subspace. Thus, the extraneous frequencies should be
suppressed down especially in reducing the space dynamics
on a desired subsystem Hamiltonian. This is coincident with
current pulse shaping technology operating in the frequency
domain and the associated control knobs are the amplitudes
and phases at a set of discrete field frequencies. 

The cost function L3 in Eq. (5d) are explicitly present to
guide the dynamics to lie in a subspace. In the present
context a subspace is defined to consist of a subset of 
states drawn from the full set with <N. This term aims to
keep population out of the undesirable N−  states
throughout the control time interval 0≤ t ≤ T. An obser-
vation of Pj(t) for these N−  states is needed to evaluate
this term. The positive weights β1, β2 and β3 in Eqs. (5b-5d)
balance the contributions of the various cost terms. In certain
circumstances simply filtering out certain frequency compo-
nents will serve to restrict the dynamics to lie within the 
eigenstates of the field free Hamiltonian H0. Frequency
filtering can be effective when the states within the desired
subspace have clearly distinct transition frequencies amongst
themselves which are separate from those connecting to the
states outside of the subspace. If frequency filtering alone
achieves the control objective along with confinement of
the dynamics to the desired subspace, then no additional
observations are needed. However, in general the population
dependent term weighted by β3 will be required to attain
this extra goal, and additional observations will be
needed. 

In the current closed-loop experiments, the OCE cost
functional only explicitly contained in Eq. (5a) and Eq. (5d),
and implicit costs on the field were borne by constraints
inherent in the laser apparatus. Thus, the constant amplitude
Al and phase θl are parameters of the field are optimized
because the system transition frequencies can be obtained
from the spectroscopic data. For computational convenience,
the optimization is performed with respect to the parameters
bl and cl which are related to the experimental field para-
meters by  =  +  and θl = arctan(cl /bl). Optimizing
the bl and cl parameters instead of the amplitude and phase
parameters was found to be convenient because the
amplitudes Al are automatically restricted to non-negative
values and the phases are automatically restricted to the
range [−π, π] but the range of the optimizing bl and cl

parameters is unrestricted. 
The three basic components of the OCE algorithm are the

laser system which generates a known field that is applied to
the molecular system, a detector which records the response
of the system to the field, and computer coded logic to
optimize the field using the field and response data. Here we
employ a gradient-based algorithm for the optimization,
although the genetic algorithm or even others could be
employed. An outline of the algorithm is as follows: 

1. Choose appropriate cost functional, which are functions
of detectable observables, and applied the initial guess field
to the system, record the detector response and compute the
objective functional J. 

2. Increase the field parameter bl (or cl), as bl → bl + δbl (or
cl → cl + δcl) with the initial value of the constant δ = 0.01
used to increment the control parameters bl (or cl) for
gradient computations while all other field parameters
remain unchanged. Using the new parameters, apply the new
field to the system; record the detector response and
compute a new objective functional . 

3. If there is no discernable difference between J and ,
then increase δ by a factor 1.5 and go back to step 2. 

4. Repeat step 2 and 3 for the remaining field parameters
b2, ...., bL and c1, ...., cL. 

5. Directly compute the gradient gl for each field para-
meter bl and cl : gl = (J' − J)/δbl and gL+l = (J' − J)/δcl;
normalize the gradient gl for each field parameter. 

6. Modify the original field using a gradient-based optimi-
zation procedure:  and ,
where α is a small positive number for the smooth descent
into the objective functional minimum. 

7. Repeat steps 2-6 until convergence is attained. 
The simulations of the experiments in this work include

the frequency filtering to reduce the number of state. We
define the transition frequency component in Eq. (3) that is
associated with a desired pathway or an undesired pathway.
The outline of the filtering algorithm is same as previous
case except the pathway restriction is setting on the gradient
in step 5, instead of the extra cost functional in step 1. The
filtering gradient computed from the gradient gl multiplied
by a filtering factor fl as = gl × fl . If ωl is related with
undesirable state, fl = 0, otherwise fl = 1. The filtering
algorithm is simple and very successful in a simple case,
however, it can not be applicable in the cases of spectral
congestion. 

Illustration of Steering the Dynamics 

This section will use simulations to explore the ability of
the cost in Eq. (4) to steer population to a target state while
simultaneously keeping the dynamics in a specified reduced
dimensional space. Naturally the subspace must contain the
initial and final states. The illustrations aim to show the
feasibility of steering the dynamics to lie in a specified
subspace by the constraint OCE procedure along with
frequency filtering. The model systems have two degrees of
freedom with the eigenstates of the field free Hamiltonian H0

being |v1, v2> where the quantum numbers take on the values
vi = 0, 1, 2, 3. The system has 16 states with the following
allowed transitions: |v1, v2> é |v1+1, v2>, |v1, v2> é |v1 +2,
v2>, |v1, v2> é |v1, v2+1>, |v1, v2> é |v1, v2+2> and |v1, v2> é
|v1±1, v2±1>. The double headed arrows imply that
excitation and de-excitation may occur, and in the case |v1,
v2> é |v1±1, v2±1> the transitions involving the two states
can occur independently. The transition frequencies associated
with the individual quantum states will be denoted
respectively as  and  while the simultaneous
transition frequencies are . The frequencies are:
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 = 0.1,  = 0.09,~  = 0.21,  = 0.19 in rad fs−1;
 = . Thus, total number of frequencies

to construct the field is 28 distinct transition frequencies.
The transition dipole moments are  = 0.5185,  =
0.7079,  = 0.8352,  = 0.1079,  = 0.1823,  =
0.5205,  = 0.5359,  = 0.5444,  = 0.2137,  =
0.2377 and with the dual transitions coupled by ,
all in units of 10−30 C m. The target time was T = 4 ps, the
pulse width was s = 0.75 ps. Although the field can have 28
distinct frequencies, there is a larger number of transitions
allowed in the system. 

The three illustrations below demonstrate the scope of
what can happen when seeking controlled subspace dynamics
under these various conditions. As a reference control case,
the closed loop algorithm was run by eliminating extraneous
amplitudes and phases without any attempt to confine the
dynamics to a reduced subspace. The goal in all the cases is
to pump the population from the initial state |0,0> to the final
state |3,3>. The weights were chosen as β1 = 1.0× 103 Å2

× V−2, β2 = 1.0× 10−2 rad−2 and β3 = 0. The resultant field
drove 92.6% of the population from |0,0> to |3,3> at the
target time, T = 4 ps. The power spectrum of the field
included significant contributions from all 28 transition
frequencies. An examination of the populations over the
course of the dynamics indicated a highly complex multi
pathway mechanism involving the participation of most of
the system's 16 states in making the transfer from |0,0> to

|3,3>. The population transfer in the reduced four level
system, that is |0,0> → |1,1> → |2,2> → |3,3>, with the
optimal field shows that only small portion of population
transfer on the state |1,1> and no population on the state
|3,3>.

The first case of reduced space dynamics involves a
subspace consisting of the states |0,0>, |1,1>, |2,2>, |3,3>.
With the allowed selection rules those subspace states are
only connected in the path |0,0> → |1,1> → |2,2> → |3,3>.
Thus, the goal is to transfer population along this path from
|0,0> to |3,3> without involving any other states. The initial
simulated experiment with this extra goal involved only
using the population cost term in Eq. (5d), and the weights
were chosen as β1 = 1.0× 103 Å2 × V−2, β2 = 1.0× 10−6 rad−2,
and β3 = −1.0× 10−3 fs−1. The term weighted by β3 < 0 in Eq.
(5d) contained all 4 populations of the states residing inside
of the subspace. This case is an example of when the
reduced space has dimension N = 4 and N−N' = 12 >N'.
Thus, for reasons of experimental efficiency it would be
physically equivalent, and likely best, to use the measured
population of the 4 pathway states. The resultant optimal
field in Figure 2(a) drove 96.3% of the population from the
ground state to the target. Upon examining the power
spectrum in Figure 2(b), the |0,0> → |1,1>, |1,1> → |2,2>
and |2,2> → |3,3> transitions dominate, as expected for the
specified subspace. Figure 2(c) shows the population vector
for all of the states over the course of the field's influence,
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Figure 2. Learning control of a two variable, sixteen state system where the goal is reduced subspace dynamics amongst the states |0,0>,
|1,1>, |2,2>, |3,3> for the population transfer |0,0> → |3,3>. The learning control is implemented by placing pressure against population
outside of the subspace. (a) The optimal control field found using a cost specifically designed to transfer amplitude along the reduced space
pathway |0,0> → |1,1> → |2,2> → |3,3>, (b) the power spectrum of the field with the dominant frequencies labelled as , (c) the
corresponding time sequence of the population  contour maps and (d) the population for the reduced four-level system driven by the
same optimal control field as a function of time.
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and only significant population occurs in the states |0,0>,
|1,1>, |2,2>, |3,3>. Application of the same field to the
reduced space N' = 4 level system produced the population
in Figure 2(d) driving 98.5% of population into state |3,3> at
the target time. A comparison of Figures 2(c) and 2(d)
indicates that the population cost term in Eq. (5d) was quite
effective. 

As a second approach to attaining reduced space control
along the path |0,0> → |1,1> → |2,2> → |3,3>, the simulated
experiment was repeated by filtering algorithm at every
iteration keeping frequencies only corresponding to the
states residing inside of the subspace instead of the extra
path constraint term in Eq. (5d). The weights were chosen as
β1 = 1.0× 103 Å2 × V−2, β2 = 1.0× 10−3 rad−2, and β3 = 0.
The resultant optimal field in Figure 3(a) drove 96.9% of the
population from |0,0> to |3,3> at the target time. Power
spectrum in Figure 3(b) had only frequencies for the |0,0> →
|1,1>, |1,1> → |2,2> and |2,2> → |3,3>. Figures 3(c) and 3(d)
show that the same field applied to the N' = 4 set of reduced
states produced essentially the same results as with the full
space. Filtering is very successful in the present case as the
frequencies for the transitions |0,0> → |1,1>, |1,1> → |2,2>
and |2,2> → |3,3> are sufficiently distinct from all other
transition frequencies. The filtering algorithm is simple and
attractive, however, it will not be applicable in cases of
spectral congestion. 

The second example illustrates this point where the
transfer of population from |0,0> to |3,3> is sought with the
dynamics restricted to a subspace consisting of the N' = 7
states |0,0>, |0,1>, |0,2>, |0,3>, |1,3>, |2,3>, |3,3>. In this

case the selection rules do not imply that the control must
sequentially follow these states as set forth. For example,
|0,0> and |0,2> are linked by |0,0> → |0,1> → |0,2> as well
as |0,0> → |0,2> directly. In this subspace the filtering
algorithm will fail as many of the undesirable transitions
connecting states inside and outside of the subspace also
have the same frequencies necessary for control amongst the
seven states forming the subspace. Thus, if successful
control within the subspace can be attained in this case, it
must employ close cooperation between the field structure
and the overall system dynamics possibly employing subtle
interference effects. To explore this situation the following
weights were used in Eq. (4): β1 = 1.0× 103 Å2 × V−2, β2 =
1.0× 10−6 rad−2, and β3 = −1.0× 10−3 fs−1. The β3 term
contained the population of all seven states inside of the
subspace. The resultant field in Figure 4(a) drove 93.9% of
the population from the ground state |0,0> to the target |3,3>
at the target time. Upon examining the power spectrum in
Figure 4(b), the most prominent intensity is  along
with lines with significant intensity at the frequencies ,

, , , , and . Figure 4(c) shows the
significant populations over the course of the field's
influence, and only sizable population exists in states lying
within the subspace. Application of the same field to just the
reduced seven level subspace system produced the
populations shown in Figure 4(d) where 91.1% of the
population is driven from the ground state to the state |3,3>.
The full mechanism by which the control maintains almost
all of the dynamics in the subspace is subtle including the
feature that population in the state |0,3> is very small
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Figure 3. Learning control by filtering algorithm with the same sixteen state system where the goal is the population transfer |0,0> → |3,3>
by keeping frequencies only corresponding to the states |0,0>, |1,1>, |2,2>, |3,3> instead of the extra cost functional. (a) The optimal control
field found using filtering algorithm at every iteration, (b) the power spectrum of the field with the dominant frequencies labelled as

, (c) the population  for all sixteen states as a function of time and (d) the population for the reduced four-level system driven
by the same optimal control field.
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throughout the controlled evolution. The close similarity of
the population evolution in Figures 4(c) and 4(d) clearly
indicates the flow |0,0> → |0,1> → |0,2> → |1,3> → |2,3>
→ |3,3>, although transitions amongst these states involve
both one and two quanta from the spectrum Figure 4(b).
Thus, the actual mechanism is likely more complex than the
simple population flow would indicate. The success of this
case is encouraging for the ability to attain reduced space
control in complex multi-level systems possibly even with
competing spectral congestion.

Discussion

In this work, we have shown the ability of closed loop
quantum learning technique to attain good quality control
while steering the dynamics reside within a reduced dimen-
sional space by the tailored cost functional. Specifically
designed cost functionals can be manipulated efficiently to
steer the dynamics on the most desired subsystem
Hamiltonian so that the desired Hamiltonian can be inverted.
Both frequency filtering and pressure on the population of
states outside of the subspace can be effective for this
purpose, with the latter procedure being more flexible. In
practice, combined partial spectral filtering and population
pressure may form the best means to achieve the dual goals
of good target control and dynamical confinement to a
subspace. The potential ability to reach the simultaneous

goals rests on the fact that generally many controls, and
control pathways, may exist giving good yields in the target.
Naturally, each case will have its own special features and a
proper exploration of this matter must await laboratory
implementation of the concept. Attaining reduced space
control will call for additional observations when control
field frequency filtering alone is not adequate. This extra
effort may be well worthwhile for a variety of reasons. First,
effective controlled dynamics confined to a subspace has the
clear prospect of simplifying the analysis of the control
mechanism. Second, applications of controlled dynamics
aiming at extracting Hamiltonian information could also
beneficially utilize the ability to focus the dynamics into a
subspace to simplify the inversion effort. 

In general, directing the control to lie in a subspace could
also be exploited to avoid physically undesirable dynamics,
including states that are especially sensitive to deleterious
environment interactions. Future work also needs to explore
the ability to confine controlled molecular dynamics to a
particular region of configuration space or to the partici-
pation of particular chemical moieties in complex poly-
atomic molecules. Analogous situations may also arise when
considering subspaces for controlled electron dynamics in
complex solid state devices. 

Acknowledgment. This work was supported by the Korea
Research Foundation Grant (KRF-2001-005-D22001). 

Figure 4. Learning control of a two variable, sixteen state system where the goal is the population transfer |0,0> → |3,3> with the dynamics
restricted to a subspace consisting of the N' = 7 states |0,0>, |0,1>, |0,2>, |0,3>, |1,3>, |2,3>, |3,3>. The learning control is implemented by
placing pressure against population outside of the subspace. (a) The optimal control field found using a cost specifically designed to confine
the dynamics to the reduced states, (b) the power spectrum of the field where the dominant single variable (  for i = 1, 2) and two
variable ( ) transitions are labelled, (c) the corresponding time sequence of the population  contour maps and (d) the
population for the reduced seven-level system driven by the same optimal control field as a function of time.
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