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In quantum dynamics of many-body systems, to identify the Hamiltonian becomes more difficult very rapidly
as the number of degrees of freedom increases. In order to simplify the dynamics and to deduce dynamically
relevant Hamiltonian information, it is desirable to control the dynamics to lie within a reduced space. With a
judicious choice for the cost functional, the closed loop optimal control experiments can be manipulated
efficiently to steer the dynamics to lie within a subspace of the system eigenstates without requiring any prior
detailed knowledge about the system Hamiltonian. The procedure is simulated for optimally controlled
population transfer experiments in the system of two degrees of freedom. To show the feasibility of steering
the dynamics to lie in a specified subspace, the learning algorithms guiding the dynamics are presented along
with frequency filtering. The results demonstrate that the optimal control fields derive the system to the desired
target state through the desired subspace.
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Introduction The successful OCE control has been carried out in a wide
variety of systems with the goal of generating a particular
During the last decade, quantum molecular control hasptical pulse shape recenti. Wilson et al manipulated
been studied for designing optical control field to activelythe emission of a laser dye using laser chirp control kifobs,
manipulate quantum dynamical syst&frSimilar logic has  and Gerbeet al. used laser phase modulation to control the
been applied to designing laser pulses to drive otheratios of the products in the fragmentation and ionization of
dynamical processes including solid-state applicafions.two organometallic compounds. The experiments by
Optimal control theory (OCT) lends itself to a systematicMeshulach and Silberberg demonstrate that OCE can be
search for the control functions or parameters to achieve effective for learning two-photon atomic level population
prescribed physical goal while also avoiding deleteriouscontrol*
processes. However, especially for polyatomic molecules, However, in practice, application of the closed-loop
this open-loop OCT has a number of serious problems: (dgarning procedure become more difficult very rapidly as the
the Hamiltonian is only approximately known, (b) the designnumber of degrees of freedom increases by the difficulty of
equations for complex systems will likely call for approxi- finding a global minimum. Thus, it is of considerable
mate solutions, and (c) the field designs produced in théterest to develop a constrained OCE procedure, which
laboratory may have systematic and random etrdisus,  steers the dynamics to lie in a specified subspace or on a
this situation points to the need for closing the loop in thesubset of the most desired subsystem Hamiltonian. For
laboratory by Optimal control experiment (OCE). inversion of molecular Hamiltonian information, it may also
The OCE search the optimal control field by learning frombe very attractive to use the closed loop learning procéfiure.
the previous trials through closed-loop procedures until ondhe difference between OCE and the inversion procedure
that derives the system to the desired target is achieved whitge as in the case of inversion, the Hamiltonian such as the
also avoiding deleterious processes. At each loop in thdipole moment or the potential energy surface are not known
search, the measured outcomes from previous trials are usbdforehand. Nevertheless, the closed loop OCE procedure
to select the new test field using an optimization procedurappears feasible for learning about molecular Hamiltonians
based on a genefitor gradient algorithm until sufficient and Figure 1 illustrates the components involved. In order to
control is achieved. Such a method is appealing becausededuce dynamically relevant Hamiltonian information, it is
requires no previous information about the system Hamiltoniargesirable to control the dynamics to lie within a reduced
although convergence would surely be improved by utilizingdomain. After thei-th loop, the molecular observation
available Hamiltonian structure. Thus, the OCE closed-loopupdates the inverted Hamiltonian informations, as well as
process eliminates issues of Hamiltonian uncertainty. Alsoprovides an estimate for the reduced domain stability where
the OCE does not need to solve Schrodinger's equaticime Hamiltonian information may be reliably extracted. The
because of the actual molecules and their dynamics are padearning algorithm generating the laser field operates to
of the loop. The closed loop OCE technique can be appliednsure that dynamics remain in the reduced domain and the
to seek control of systems having an arbitrary number of thetability of the domain can control the quality of the inverted
degrees of freedom. Hamiltonian informations.
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. _ tively connected by up to transitions. The Hamiltonian that
oarming Algortim for _ describes thed¥ eigenstates of the molecule is
@Inversion quality control Inve_lr_stlon N-1
Eitv control _
Ho = _Z Ei g (1)
trial field Laser domain Inver_sion . =0 . ) )
e | Pulse control Algorithm |———— where E; is the energy of eigenstaig] . The interaction
Eo® | shaper Vix), | . h X .
between the molecule and the field is described by the time
Molecular Sample dependent Schrodinger equation with the initial wave-
observation function |¥(0)0 containing all population in the ground
Figure 1. Closed loop process for learning control of molecula state,
Hamiltonian information. The learning algorithm serves the V] .
purpose of guiding the control field to maintain the dynamics in a -d—tlw(t)D: = i[Ho—pe(t)]|¥(H)D (2a)
specified subspace as well as to control the inversion quality of the
Hamiltonians by the domain stability. |¥(0)O= |@,0 (2b)

A recently introduced tracking approach can achieve and the control field is a modulated Gaussian given by,
form of reduced space dynamics by a priori specifying an
objective trajectory track as the expectation values of a £(t) = exd—(t—T/2) /(25 )] Z Acoqwt+6) (3
chosen operatd?. The technique deduces the control electric
field such that the system evolution exactly follows thewhere thew are the transition frequencies of the system, and
temporal track. This approach has certain attractive featurethe A and 8 are the corresponding amplitudes and their
but presently the choice of the expectation values is a heawssociated phases, respectively. In the present closed loop
demand calling for the considerably physical insight. Anothetearning control experiments, it is desired to pump all
approach of a reduced description of the dynamics focusg®pulation from the ground state to tkh populationPiT at
on a subset of the most important degrees of freedom arttle target time T , in an efficient manner by eliminating the
treats the other degrees of freedom as a background to whiafsignificant field components and by guiding the dynamics
the subset is couplél.However, this reduction is useful to lie in a specified subspace. Also, the cost functional
only if it suggests accurate approximations which permitguiding the experiments can contain only quantities which
analysis of the dynamics of the subsystem with weaknay be explicitly measured. Thus, the physical objective

perturbations from the background. functional is specifically given by,
In this paper, we introduce a constrained OCE that greatly
simplifies the dynamics without a priori specifying an J ML), e®)] = A(T) +Ly+Lo+ L3 4)

trajectory track. Only minimal information is needed about_ .
- .- with
the system states or other characteristics to specify a
subspace of interest for the dynamics to reside in. This
freedom of manipulation permits the actual dynamical path
to evolve unconstrained within the subspace. The price paid
for seeking this reduction of the dynamics is the need to L,=B> A,2 (5b)
perform an extra set of temporal observations as data for the '
learning algorithm to guide the dynamics so that it stays L,=B,5 &
within the subspace. This paper will introduce OCE reduced 27 F2
space dynamics through simple modifications of the cost
functional as part of the learning algorithm. In Sect. II, the
OCE formulation for the steering the dynamics within
reduced space is presented, and section Ill demonstrates
simulated application of this algorithm to complex systemsThe learning algorithm in the closed loop works to find a
and illustrates a tailored cost functional to steer dynamicsontrol field g(t) that minimizes the objective functindl
that greatly simplifies the complexity of the system The error functior®(T) in Eq. (5a) serves to transfer ki
Hamiltonian. Closed-loop process for learning molecularstate actual populatioRi(t) toward the desired population

N T.2
o) = IZ [Pi(T) -Pi] (5a)

(5¢0)

T N-N
La=fs [t Jz Pi(t). (5d)

Hamiltonian is discussed. P by the field at the target tinTe While Eqg. (5b) and Eq.
(50) contain the positive field cost functions which is
Reduced Space Optimal Control Experiment dependent on the amplitudes and phases of the field. These

terms minimize all the amplitudes and phases of the field

To steer the dynamics to lie within a specified subspace bgomponents that have little significance for the controlled
tailored cost functionals, we simulated constraint OCEdynamics. In general, it is not necessary to have all
procedure involving population transfer in multi-level frequency and phase components for achieving control,
guantum systems. The physical system Kdsvels radia- especially, for steering the dynamics to lie in a specified
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subspace. One or more frequencies might have little effect 2. Increase the field paramebeforcy), asby — by + dby (or
on the subspace. Thus, the extraneous frequencies shouldte- ¢ + dg) with the initial value of the constatt= 0.01
suppressed down especially in reducing the space dynamiased to increment the control parametbrs(or c) for
on a desired subsystem Hamiltonian. This is coincident witlgradient computations while all other field parameters
current pulse shaping technology operating in the frequencgemain unchanged. Using the new parameters, apply the new
domain and the associated control knobs are the amplitudéield to the system; record the detector response and
and phases at a set of discrete field frequencies. compute a new objective functiondl
The cost functiorLs in Eq. (5d) are explicitly present to 3. If there is no discernable difference betwdemdJ' ,
guide the dynamics to lie in a subspace. In the preserihen increasé by a factor 1.5 and go back to step 2.
context a subspace is defined to consist of a subddt of 4. Repeat step 2 and 3 for the remaining field parameters
states drawn from the full set witli N¢ This term aimsto by, ....,b. andcy, ....,c.
keep population out of the undesirabd-N' states 5. Directly compute the gradiegt for each field para-
throughout the control time interval<&<T. An obser- meterb andg : g = (' — J/dy andgea = (' — J)/dc;
vation of Pj(t) for theseN-N’' states is needed to evaluate normalize the gradier for each field parameter.
this term. The positive weighfs, 3, andf3; in Egs. (5b-5d) 6. Modify the orlglnal fleld using a gradlent based optimi-
balance the contributions of the various cost terms. In certaization procedurdd™” = b™" —ag, angd®“=c""-ag,,, |,
circumstances simply filtering out certain frequency compo-wherea is a small positive number for the smooth descent
nents will serve to restrict the dynamics to lie within e  into the objective functional minimum.
eigenstates of the field free Hamiltonidty. Frequency 7. Repeat steps 2-6 until convergence is attained.
filtering can be effective when the states within the desired The simulations of the experiments in this work include
subspace have clearly distinct transition frequencies amongsgte frequency filtering to reduce the number of state. We
themselves which are separate from those connecting to tliefine the transition frequency component in Eq. (3) that is
states outside of the subspace. If frequency filtering alonassociated with a desired pathway or an undesired pathway.
achieves the control objective along with confinement ofThe outline of the filtering algorithm is same as previous
the dynamics to the desired subspace, then no additionaase except the pathway restriction is setting on the gradient
observations are needed. However, in general the populatian step 5, instead of the extra cost functional in step 1. The
dependent term weighted i will be required to attain filtering gradient computed from the gradignptmultiplied
this extra goal, and additional observations will beby a filtering factoff asg,' et =g x fi. If aw is related with
needed. undesirable statefi =0, otherwisefi=1. The filtering
In the current closed-loop experiments, the OCE cosalgorithm is simple and very successful in a simple case,
functional only explicitly contained in Eq. (5a) and Eq. (5d), however, it can not be applicable in the cases of spectral
and implicit costs on the field were borne by constraintscongestion.
inherent in the laser apparatus. Thus, the constant amplitude
A and phaseéd are parameters of the field are optimized lllustration of Steering the Dynamics
because the system transition frequencies can be obtained
from the spectroscopic data. For computational convenience, This section will use simulations to explore the ability of
the optimization is performed with respect to the parameterthe cost in Eq. (4) to steer population to a target state while
b andc WhICh are related to the experimental field para-simultaneously keeping the dynamics in a specified reduced
meters byA, :bI +c|2 an@ = arctan /b). Optimizing  dimensional space. Naturally the subspace must contain the
theb andg parameters instead of the amplitude and phaseiitial and final states. The illustrations aim to show the
parameters was found to be convenient because tHeasibility of steering the dynamics to lie in a specified
amplitudesA are automatically restricted to non-negative subspace by the constraint OCE procedure along with
values and the phases are automatically restricted to tHeequency filtering. The model systems have two degrees of
range F7; 7 but the range of the optimizinly and ¢ freedom with the eigenstates of the field free Hamiltokign
parameters is unrestricted. being Y1, vo> where the quantum numbers take on the values
The three basic components of the OCE algorithm are thea =0, 1, 2, 3. The system has 16 states with the following
laser system which generates a known field that is applied tallowed transitionsy], vo> <> |vi+1, Vo>, V1, Vo> <> vy +2,
the molecular system, a detector which records the responsg>, Vi, Vo> <> |V, Vot+1>, 1, Vo> < v, Vo+2> andyy, Vo> <>
of the system to the field, and computer coded logic tdvitl, v»*1>. The double headed arrows imply that
optimize the field using the field and response data. Here wexcitation and de-excitation may occur, and in the case |
employ a gradient-based algorithm for the optimization,v.> < |vit1, vo+1> the transitions involving the two states
although the genetic algorithm or even others could bean occur independently. The transition frequencies associated
employed. An outline of the algorithm is as follows: with the |nd|V|duaI guantum states will be denoted
1. Choose appropriate cost functional, which are functionsespectively amv an 22\,2. while the simultaneous
of detectable observables, and applied the initial guess flel'dan5|t|on frequenmes are)\l,l\,z\,l\, L . The frequencies are:
to the system, record the detector response and compute tb.c? has the valuefso01 , = 0.18), = 0.16,; = 0.14,
objective functional. wy, = 0.34, w13 = 0.3, has the values, =0.11,
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13 =0.1, wza =0. 09 ~w12 =0. 210,)13 = 0.19rdd fs™; [3,3>. The population transfer in the reduced four level
Wpvuyv, = Wy w\,v . Thus, total number of frequencies system, that is |0,0> |1,1> - |2,2> - |3,3>, with the
to construct the field is 28 dlstlnct transition frequencies.optimal field shows that only small portion of population

The transmon dipole moments ay.q, = 0.51 =transfer on the state |1,1> and no population on the state
0.7079, ugg, =0. 8352/,192 =0. 1079%3 = 0.18283, =13,3>.

0.5205,u7, =0.53594,; =0.5444;, = 0.213i, = The first case of reduced space dynamics involves a
0.2377 and with the dual transitions couplegy, . x - ,Subspace consisting of the states |0,0>, |1,1>, [2,2>, |3,3>.

all in units of 10*° C m The target time wa$ = 4 ps, the  With the allowed selection rules those subspace states are
pulse width was = 0.75 ps. Although the field can have 28 only connected in the path |0,0> |1,1> - [2,2> - |3,3>.
distinct frequencies, there is a larger number of transitionghus, the goal is to transfer population along this path from
allowed in the system. |0,0> to |3,3> without involving any other states. The initial
The three illustrations below demonstrate the scope ofimulated experiment with this extra goal involved only
what can happen when seeking controlled subspace dynamiasing the population cost term in Eq. (5d), and the weights
under these various conditions. As a reference control caseere chosen g% = 1.0x 160 A2x V2 3, =1.0x 10%rad?,
the closed loop algorithm was run by eliminating extraneousand3; =—1.0x 107 fs*. The term weighted b$ < 0 in Eq.
amplitudes and phases without any attempt to confine théd) contained all 4 populations of the states residing inside
dynamics to a reduced subspace. The goal in all the casesof the subspace. This case is an example of when the
to pump the population from the initial state |0,0> to the finalreduced space has dimensidi=4 andN-N' = 12 >N'.
state |3,3>. The weights were choserBas 1.0x 10° A2 Thus, for reasons of experimental efficiency it would be
xV7? B =1.0x107%rad? and3 = 0. The resultant field physically equivalent, and likely best, to use the measured
drove 92.6% of the population from |0,0> to [3,3> at thepopulation of the 4 pathway states. The resultant optimal
target time, T=4 ps. The power spectrum of the field field in Figure 2(a) drove 96.3% of the population from the
included significant contributions from all 28 transition ground state to the target. Upon examining the power
frequencies. An examination of the populations over thespectrum in Figure 2(b), the |0,0> |1,1>, |1,1>- |2,2>
course of the dynamics indicated a highly complex multiand |2,2>- |3,3> transitions dominate, as expected for the
pathway mechanism involving the participation of most ofspecified subspace. Figure 2(c) shows the population vector
the system's 16 states in making the transfer from |0,0> tfor all of the states over the course of the field's influence,

10

. v e
(b) 00,11
[ 8t ("’11‘22
>
= 12
— 8 6t W33
falt Q
w
Ll
5 o
2
(e
n 21
0 Aﬁ M. A
on o1 0.2 0.3 04
o(rad/fs)
10
(d)
08
C C
§el 2 osf
= =)
© ©
a a
o S oaf
o a
02}
a0
0

2
t (ps)

Figure 2. Learning control of a two variable, sixteen state system where the goal is reduced subspace dynamics amongst the states |0,C
|1,1>, |2,2>, |3,3> for the population transfer |0;0%3,3>. The learning control is implemented by placing pressure against population
outside of the subspace. (a) The optimal control field found using a cost specifically designed to transfer amplitudgedocgdrspace

pathway |0,0>- |1,1>- |2,2>- |3,3>, (b) the power spectrum of the field with the dominant frequencies Iabeldeﬁ, asy, , (c) the
corresponding time sequence of the populaiop, contour maps and (d) the population for the reduced four-level systerﬂnelrlven by
same optimal control field as a function of time.
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Figure 3. Learning control by filtering algorithm with the same sixteen state system where the goal is the population transf¢s |8;0>

by keeping frequencies only corresponding to the states |0,0>, |1,1>, |2,2>, |3,3> instead of the extra cost functeogtifz Tontrol

fiellgl found using filtering algorithm at every iteration, (b) the power spectrum of the field with the dominant frequepdexs $ab
Wiv,vyv, » (€) the populatiorP, ,,  for all sixteen states as a function of time and (d) the population for the reduced four-level gystem dri
by the same optimal control field.

and only significant population occurs in the states |0,0>¢ase the selection rules do not imply that the control must
[1,1>, |2,2>, |3,3>. Application of the same field to thesequentially follow these states as set forth. For example,
reduced spachl' = 4 level system produced the population [0,0> and |0,2> are linked by |0,0>|0,1> - |0,2> as well
in Figure 2(d) driving 98.5% of population into state |3,3> atas |0,0> - |0,2> directly. In this subspace the filtering
the target time. A comparison of Figures 2(c) and 2(d)algorithm will fail as many of the undesirable transitions
indicates that the population cost term in Eqg. (5d) was quiteonnecting states inside and outside of the subspace also
effective. have the same frequencies necessary for control amongst the

As a second approach to attaining reduced space contreéven states forming the subspace. Thus, if successful
along the path |0,0> [1,1>- |2,2>- |3,3>, the simulated control within the subspace can be attained in this case, it
experiment was repeated by filtering algorithm at everymust employ close cooperation between the field structure
iteration keeping frequencies only corresponding to theand the overall system dynamics possibly employing subtle
states residing inside of the subspace instead of the extiaterference effects. To explore this situation the following
path constraint term in Eq. (5d). The weights were chosen aseights were used in Eq. (43 = 1.0x10° A2xV 2 3, =
Bi=10x10° A?xV2 B, =1.0x10%rad? andB = 0. 1.0x10° rad? and s = -1.0x10° fs*. The B term
The resultant optimal field in Figure 3(a) drove 96.9% of thecontained the population of all seven states inside of the
population from |0,0> to |3,3> at the target time. Powersubspace. The resultant field in Figure 4(a) drove 93.9% of
spectrum in Figure 3(b) had only frequencies for the |0,0> the population from the ground state |0,0> to the target |3,3>
[1,1>, |1,1>- |2,2> and |2,2> |3,3>. Figures 3(c) and 3(d) at the target time. Upon examining the power spectrum in
show that the same field applied to tie= 4 set of reduced Figure 4(b), the most prominent intensity d%; ;3 along
states produced essentially the same results as with the fulith lines with significant intensity at the frequencie, ,

. . . . 1 1 2 2 2 .

space. Filtering is very successful in the present case as the,;, w3, Wy, Wy, , and w,, . Figure 4(c) shows the
frequencies for the transitions |0,0>[1,1>, |1,1>- |2,2>  significant populations over the course of the field's
and |2,2>- |3,3> are sufficiently distinct from all other influence, and only sizable population exists in states lying
transition frequencies. The filtering algorithm is simple andwithin the subspace. Application of the same field to just the
attractive, however, it will not be applicable in cases ofreduced seven level subspace system produced the
spectral congestion. populations shown in Figure 4(d) where 91.1% of the

The second example illustrates this point where thgopulation is driven from the ground state to the state |3,3>.
transfer of population from |0,0> to |3,3> is sought with theThe full mechanism by which the control maintains almost
dynamics restricted to a subspace consisting ofNthe 7 all of the dynamics in the subspace is subtle including the
states |0,0>, |0,1>, |0,2>, |0,3>, |1,3>, |2,3>, |3,3>. In thigature that population in the state |0,3> is very small
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Figure 4. Learning control of a two variable, sixteen state system where the goal is the population transfe{3(B&>with the dynamics
restricted to a subspace consisting ofithe 7 states |0,0>, |0,1>, |0,2>, |0,3>, |1,3>, |2,3>, |3,3>. The learning control is implemented by
placing pressure against population outside of the subspace. (a) The optimal control field found using a cost spedfiealljodesifine

the dynamics to the reduced states, (b) the power spectrum of the field where the dominant singlew'@;iable i(=1, 2joand two

variable (wfvzy\,l.vz. ) transitions are labelled, (c) the corresponding time sequence of the pop®jation contour maps and (d) the
population for the reduced seven-level system driven by the same optimal control field as a function of time.

throughout the controlled evolution. The close similarity of goals rests on the fact that generally many controls, and
the population evolution in Figures 4(c) and 4(d) clearlycontrol pathways, may exist giving good yields in the target.
indicates the flow |0,0> |0,1> - |0,2>- |1,3>- |2,3>  Naturally, each case will have its own special features and a
- |3,3>, although transitions amongst these states involvproper exploration of this matter must await laboratory
both one and two quanta from the spectrum Figure 4(bjmplementation of the concept. Attaining reduced space
Thus, the actual mechanism is likely more complex than theontrol will call for additional observations when control
simple population flow would indicate. The success of thisfield frequency filtering alone is not adequate. This extra
case is encouraging for the ability to attain reduced spaceffort may be well worthwhile for a variety of reasons. First,
control in complex multi-level systems possibly even with effective controlled dynamics confined to a subspace has the

competing spectral congestion. clear prospect of simplifying the analysis of the control
mechanism. Second, applications of controlled dynamics
Discussion aiming at extracting Hamiltonian information could also

beneficially utilize the ability to focus the dynamics into a
In this work, we have shown the ability of closed loop subspace to simplify the inversion effort.

quantum learning technique to attain good quality control In general, directing the control to lie in a subspace could
while steering the dynamics reside within a reduced dimenalso be exploited to avoid physically undesirable dynamics,
sional space by the tailored cost functional. Specificallyincluding states that are especially sensitive to deleterious
designed cost functionals can be manipulated efficiently t@nvironment interactions. Future work also needs to explore
steer the dynamics on the most desired subsysterie ability to confine controlled molecular dynamics to a
Hamiltonian so that the desired Hamiltonian can be invertedparticular region of configuration space or to the partici-
Both frequency filtering and pressure on the population ofpation of particular chemical moieties in complex poly-
states outside of the subspace can be effective for th&tomic molecules. Analogous situations may also arise when
purpose, with the latter procedure being more flexible. Inconsidering subspaces for controlled electron dynamics in
practice, combined partial spectral filtering and populationcomplex solid state devices.
pressure may form the best means to achieve the dual goals
of good target control and dynamical confinement to a Acknowledgment This work was supported by the Korea
subspace. The potential ability to reach the simultaneouResearch Foundation Grant (KRF-2001-005-D22001).
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