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Strained small oxacycles containing an exocyclic methylene
group, methylene oxirane (allene oxide) 1!, a-methylene-B-
lactone 2% and diketene 3* have been studied intensively
by theoretical and synthetic chemists. Surprisingly, however,
studies on methyleneoxetanes 4* and 5§ have quite been ig-
nored. Only the parent 3-methyleneoxetane § was synthesi-
zed from the retro Diels-Alder reaction of an anthracene ad-
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Table 1. Synthesis of 2,2-Disubstituted 3-Methyleneoxetanes 10
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duct® and the interaction between the endocyclic oxygen and
the methylene group of it was investigated by ultraviolet
photoelectron spectra and molecular orbital calculations.®
In continuation of our studies on exploring synthetic ap-
plication of 2-trialkylstannyl-3-trimethylsilylpropene 6,” we
found a facile method for the synthesis of 2,2-disubstituted
3-methyleneoxetanes. Transmetallation of 6 with n-butylli-
thium provided 2-lithio-3-trimethylsilylpropene 7, which rea-
cted smoothly at —78 C with carbonyl compounds to pro-
duce 2-[(trimethylsilyl)methylJallyl alcohols 8 in moderate
yields. This route revealed much improved yield of 8a com-
pared to the reaction of the vinyllithium intermediate 7 ge-
nerated from lithium halogen exchange of 2-bromoallylsilane
by t-butyllithium with cyclohexanone® (18%, cf. Table 1, entry
a). When allyl alcohols 8a-d were treated with a 10% excess
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of dioxane dibromide in tetrahydrofuran-t-butyl alcohol (10-
15 equiv) at —78 C, 2-(bromomethyl)allyl alcohol 9a-d were
obtained in high yields.® When the reaction was performed
in the absence of f-butyl alcohol, the yield became lower
(entry c). On the contrary, the reactions of alcohols 8e-h
where R! and/or R? is an aryl group with dioxane dibromide
provided 2-(bromomethyDallyl alcohols 9e-h along with 3-
bromo-2-(bromomethyl)propenes 11e-h. By adding ¢-butyl al-
cohol the formation ratio of monobromide over dibromide
was improved, although dibromide was still produced (entry
f). The formation of dibromides 11 could be explained as
follows. 2-[(Trimethylsilyl)methyl]allyl alcohols 8 react with
bromine to yield allyl bromides 9 and bromotrimethylsilane.
The bromotrimethylsilane formed reacts further with the
products 9 to afford 11. In the reactions of allyl alcohols
8a-d, the generated bromotrimethylsilane could be removed
by the reaction of it with ¢-butyl alcohol.® However, in the
reactions of alcohols 8e-h, the formations of dibromides 11e-
h could not be completely suppressed by #-butyl alcohol. The
difference would come from the stability of the carbocations

ii.
2
R on
8 + B, —» + MesSiBr —»
Br
9

R? SliMea

RLY_OH
+ B
Xa

-Me;SIOH
—_—

When 002 M THF solution of 2-(bromomethyl)allyl alco-
hols 9b-f were treated with potassium hydride at room tem-
perature for 5 min, 3-methyleneoxetanes 10b-f were produ-
ced in high yields. In case of 9a, the reaction proceeded
rapidly and completely by adding a small amount of HMPA
to afford 10a. The infrared absorption for the exocyclic car-
bon-carbon double bonds in 10 were appeared at high fre-
quency (1688 cm™1-1698 cm™!) due to the small ring size
effect.’? Unfortunately, the reactions of 9f and 9g where R!
is a hydrogen with potassium hydride did not yield 2-mono-
substituted 3-methyleneoxetanes 10f and 10g, but a mixture
of unidentified products.
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In conclusion the route should be useful for the synthesis
of 2,2-disubstituted 3-methyleneoxetanes, although it is not
applicable for the synthesis of 2-monosubstituted 3-methyl-
eneoxetanes.'! The reason for this difference would be inter-
esting but not clear at the present.
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Conformations of 4-membered ring systems have been ex-
tensively investigated by a variety of experimental and theo-

retical methods.! Cyclobutane is stable in a puckered confor-
mation with the puckering angle of ca. 30° and the barrier

Table 1. Calculated and Observed Geometries® of Oxetane
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to planarity of 1.5 kcal/mol.!~® Although planar conformation
is favorable in terms of ring strain, the cyclobutane ring
structure may alleviate unfavorable eclipsed interactions bet-
ween vicinal hydrogens by tilting the CH, groups in the op-
posite direction? Thus, the degree of puckering in 4-mem-
bered ring systems is generally accepted as a compromise
between ring strain and torsional strain.

The introduction of heteroatom in the cyclic compounds
usually changes the equilibrium conformation.* In oxetane,
replacement of CH, group by O atom can substantially re-
duce the number of unfavorable eclipsed interactions bet-
ween vicinal hydrogen. This may cause oxetane to be flatter
than cyclobutane. Far-IR® and microwave (MW)? studies have
provided that the ring structure of oxetane is planar. How-
ever, the planar conformation of oxetane is not the minimum
of the puckering potential energy function (PPEF) but is at-
tributed to a rapid equilibrium between two puckered confo-
rmers through a small energy barrier. X-ray results at low
temperature (90 K and 140 K) have furnished that the oxe-
tane ring exists in a puckered conformation with the pucker-
ing angle with ca. 10°.7 The NMR analyses® using dipolar
coupling constants have agreed to the X-ray data. Since both
experiments, X-ray and NMR, have been carried out in the
condensed phases, the equilibrium conformation may differ
from the one in the gas-phase.

Ab initio methods have been applied to oxetane with the
modest basis sets,*! i.e. 3-21G and 4-21G. All the calculations
have concluded that the planar form is the equilibrium con-
formation. Earlier semi-empirical MINDO/2' results have es-
timated the geometry of oxetane poorly and a zero pucker-
ing potential.”! Laane and coworkers have utilized the mole-
cular mechanics (MM2) to examine the PPEF for oxetane.!®
MM2 has deduced that the ring structure of oxetane is plan-
ar and, of course, with no puckering potential.

In order to better understand the conformational nature
of oxetane, ab initio and semi-empirical molecular orbital
calculations were performed using the GUASSIAN 92'2 series
of programs on a CRAY Y-MP computer. The equilibrium
geometries were fully optimized at four different levels of
theories - PM3,"* HF/3-21G,* HF/6-31G*® and MP2/6-31G*"
Semi-empirical method was applied to assess the performa-
nce of PM3 hamiltonian for our future studies on highly
substituted oxetane derivatives."”

Table 1 summarizes the geometric parameters optimized

PM3 HF/3-21G HF/6-31G* MP2/6-31G* Mw? X-ray
Cco 1453 1.476 1419 1451 1.449(2) 1.460(1)
CcC 1.544 1.558 1537 1.533 1.549(3) 1.534(2)
C.H 1.099 1.079 1.082 1.087 1.091(2) 0.97(2)
CsH 1.099 1.078 1.084 1.092 1.100(3) 0.97(2)
<COC 92.60 92.10 92.78 90.08 91.59(70) 90.18(8)
£CCO 90.82 90.95 91.66 9145 91.44(30) 91.99(7)
<CCC 85.76 86.00 83.90 84.13 84.55(10) 84.79(9)
<HCH 107.31 110.26 109.26 109.66 110.18(10)
<HCH 109.20 110.74 109.04 109.31 110.44(30)
Ring puckering angle? 0.00 0.00 0.00 17.85 0.00 10.7(1)

¢Lengths in A, and angles in degrees. *From the rotational constants, ref. 6b. ‘At 90 K, ref. 7. “see Figure 1 for the definition.



