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Green and Kubo1 showed that the phenomenological
coefficients describing many transport processes and time-
dependent phenomena in general could be written as
integrals over a certain type of function called a time-
correlation function. The Green-Kubo formulas are the
formal expressions for hydrodynamic field variables and
some of the thermodynamic properties in terms of the
microscopic variables of an N-particle system. The identi-
fication of microscopic expressions for macroscopic vari-
ables is made by a process of comparison of the conservation
equations of hydrodynamics with the microscopic equations
of change for conserved densities. The importance of these
formulas is three-fold: they provide an obvious method for
calculating transport coefficients using computer simulation,
a convenient starting point for constructing analytic theories
for non-equilibrium processes, and an essential information
for designing non-equilibrium molecular dynamics (NEMD)
algorithm. The Green-Kubo formula for the shear viscosity
is given by

(1)

where Pαβ is an off-diagonal ( ) of the viscous pressure
tensor:

. (2)

In recent years, non-equilibrium molecular dynamics
(NEMD) simulation has emerged as a powerful tool for the
study of transport coefficients of both simple and molecular
fluids. The general principle of the NEMD method2 is to
introduce a (possibly fictitious) external field X into the
equations of motion of the system, which derives the
corresponding thermodynamic flux J. The first requirement
for this applied field is that it should be consistent with the
periodic boundary conditions to ensure that the simulation
box remains homogeneous. The second requirement is that
the transport coefficient γ of interest can be calculated from
the constitutive relation:

. (3)

The formal proof that an algorithm satisfies these two
requirements is given by linear response theory.3-5

Among many NEMD methods developed for calculating

the shear viscosity the most efficient technique appears to be
the Sllod algorithm,2,3 a standard method using homogene-
ous Lees-Edwards ‘sliding brick’ boundary conditions.6 This
algorithm sets up a steady state planar Couette flow with the
two plates moving in opposite x directions located at y = ±
so that the streaming velocity has a non-zero component in
the x direction dux/dy = γ where γ is the constant strain rate.

Following Evans and Morriss,2,3 the equations of trans-
lational motion for the center of mass in a molecular fluid
are given by: 

(4)

(5)

where u = (ux, 0, 0) with ux = γy is the velocity field
corresponding to planar Couette flow. 

The equations of rotational motion about the center of
mass for molecular fluids are derived using quaternions7,8

follows:

 = Ti − αrLi (6)

Li
p = AiLi (7)

(8)

, (9)

where Li is the angular momentum of molecule i, Ti is the
torque on molecule i in the laboratory frame,  and  are,
respectively, the angular momentum and angular velocities
of molecule i in its principle axis frame, Ai is the rotation
matrix which transforms vectors form the laboratory to
principal axis frame of molecule i, Ik is the principal axis of
momenta of inertia of each molecule, and qik, k = 1, 2, 3, 4,
are the quaternion parameters related to the Euler angles
describing the orientation of molecule i in space. The
translational and rotational temperature constraint parameters
αt and αr are given by 

(10)
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and

. (11)

These equations of motion are combined with the Lees-
Edwards “sliding brick” boundary conditions.6 In the
absence of the thermostat and the isobaric constraint, the
terms in Eqs. (4) and (5) involving the strain field, γ, cancel
to yield Newton’s equations of motion relating ri, and Fi.
This implies that the Sllod algorithm truly generates
boundary driven planar Couette flow, leading to the
conclusion that it is correct to arbitrary order in the strain
rate.3 In order to obtain a good signal-to-noise ratio, with
NEMD it is necessary to use strain rates γ which are high
enough to cause the shear viscosity to be strain rate
dependent. In order to compute the shear viscosity of a
Newtonian fluid using the Sllod algorithm, after the
simulation reaches the steady state at a given strain rate γ one
computes and averages the pressure tensor defined in Eq.
(2). The strain rate dependent shear viscosity is then
obtained from Newton’s law of viscosity 

(12)

where Pxy and Pyx are the averaged xy and yx components of
P. From kinetic and mode coupling theories, it is known9-11

that to leading order the strain rate dependence of the shear
viscosity is linear in γ1/2. Hence, to apply the Sllod algorithm
to a Newtonian fluid, one performs several simulations at
differing strain rates γ and fits the resulting strain dependent
viscosities to the equation:

η = η0 + η1γ1/2. (13)

The zero strain rate extrapolation of η, η0, is thus the
Newtonian viscosity. 

The molecular model used is the same as in the previous
MD simulations12,13; the benzene ring is assumed as a rigid-
body, but three C-H bonds in the methyl groups of toluene
(C6H5CH3) and p-xylene (CH3C6H4CH3) are not assumed to

be rigid. Simple harmonic oscillation potentials for C-H
bond stretching and C-C-H and H-C-H bond angle bending
in the methyl group are used, and the methyl groups are
rotating according to a torsional potential. Potential
parameters for the molecular model are given in Ref. 12. The
usual periodic boundary condition in the x-, y-, and z-
directions and minimum image convention for pair potential
were applied. A spherical cut-off of radius Rc = 12.5 Å was
employed for the pair interactions. For the integration over
time, we adopted Gear’s fifth order predictor-corrector
algorithm14 with a time step of 0.005 ps for benzene and
0.0005 ps for toluene and p-xylene. All NEMD simulations
in canonical (NVT) ensembles were carried on 120
molecules and fully equilibrated for about several 1,000,000
time steps for each liquid molecular system at 293.15 K. The
equilibrium properties were then averaged over 5 blocks of
2,000,000 time steps for a total of 10,000,000 time steps, and
the configurations of molecules were stored every 10 time
steps for analyses of structural and dynamic properties. 

Results and Discussion

The results are summarized in Table 1 for the liquid
benzene, toluene, and p-xylene at 293.15 K. The pressure,
LJ energy, and shear viscosity are reported as a function of
strain rate (γ). Figure 1 shows the shear viscosity as a
function of γ1/2 for these systems. The calculated shear
viscosities of these systems at lower strain rates for γ1/2 ≤ 0.6
ps1/2 fit the theoretical prediction, Eq. (13), quite well, but
those at higher strain rates for γ1/2 ≥ 0.7 ps1/2 are not a linear
function of γ. Hence the zero strain rate extrapolation of the
shear viscosities at γ1/2 = 0.1-0.6 ps1/2, shown as least-squares
fitted straight lines in Figure 1, is used to determine the
values of the shear viscosity which are listed in Table 1 at γ =
0.0. At the highest strain rate, γ = 1.0 ps, the magnitude of
calculated shear viscosities is in the order of p-xylene,
toluene, and benzene. As the strain rate decreases, the
calculated shear viscosity of benzene becomes bigger than
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Table 1. The pressure (p in atm), LJ energy (ELJ in kJ/mol), and viscosity (η in cP) of the liquid benzene, toluene, and p-xylene at 293.15 K
as functions of strain rate (γ in ps−1)

 benzene (0.928)a toluene (0.933)a p-xylene (0.953)a

γ  p ELJ η p ELJ η p ELJ η

 1.00 861 -28.44 0.198 -590 -32.81 0.210 -70 -37.58 0.236
 0.81 528 -28.69 0.219 -831 -33.05 0.231 -352 -37.94 0.257
 0.64 207 -28.84 0.246 -1073 -33.22 0.255 -622 -38.19 0.283
 0.49 -100 -28.93 0.278 -1284 -33.33 0.286 -868 -38.37 0.314
 0.36 -381 -28.96 0.323 -1473 -33.39 0.323 -1083 -38.48 0.354
 0.25 -627 -29.01 0.382 -1627 -33.44 0.375 -1271 -38.56 0.403
 0.16 -836 -29.11 0.448 -1751 -33.51 0.435 -1417 -38.61 0.462
 0.09 -994 -29.20 0.524 -1846 -33.55 0.505 -1530 -38.64 0.525
 0.04 -1104 -29.26 0.607 -1903 -33.57 0.581 -1601 -38.64 0.599
 0.01 -1160 -29.28 0.670 -1928 -33.65 0.637 -1625 -38.75 0.652
0.0 -1200 -29.28 0.741b -1940 -33.60 0.702b -1633 -38.64 0.713b

aDensity (g/cm3) of each simulated system. bThe extrapolated value.
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that of toluene at γ < 0.36 ps and bigger than that of p-xylene
at γ < 0.09 ps.

The calculated viscosities of the liquid benzene, toluene,
and p-xylene from our NEMD simulations are slightly
higher than the experimental results of the viscosity for these
systems at 293.15 K which are 0.652, 0.590, and 0.648 cP15

but those are generally in good agreement. The current
choice of the density of each simulated system is rather
fortunate. In the previous study of the isobaric-isothermal
(NpT) MD simulations for these systems,13 the determined
density of each system is given in Table 2. These values of
density were apparently too high when compared with the
experimental ones - 0.87865, 0.8669, and 0.8611 g/cm3,
respectively. The previous canonical (NVT) MD simulations
study for the same systems12 of the experimental densities
gave very low pressures as shown in Table 2, which invoked
restudy of these systems by NpT MD simulations.13 This

should be pointed out as a possible limitation of this model
with regard to the system density.

The calculated viscosities of these systems are very
sensitive to the choice of the density. For example, Fig. 1
compares three sets of shear viscosities of benzene at three
different densities of 0.917(benzene*), 0.928(benzene), and
0.939(benzene**) g/cm3 which are corresponding to the
lengths of the simulation boxes of 2.57, 2.56, and 2.55 nm,
respectively. The resulting viscosities at these densities are
0.682, 0.741, and 0.801 cP, respectively. The first value of
the viscosity is closest to the experimental one, but taking
account of the order of the viscosity for liquid benzen,
toluene, and p-xylene, the second one is most reasonable
value.

We also calculated the shear viscosities, diffusion constants,
and friction constants of these systems at 293.15 K and at the
same densities by carrying out equilibrium molecular
dynamics (EMD) simulations. The results are listed in Table
3. It is well known that the stress auto-correlation (SAC)
function for the shear viscosity, the integrand of Eq. (1), has
a non-decaying long-time tail, which makes it difficult to
calculate the shear viscosity. In contrast with the SAC
function, the velocity auto-correlation (VAC) function, the
integrand of the corresponding Green-Kubo formula for the
calculation of self-diffusion coefficient, decays quickly. The
difference between two auto-correlation functions is that the
VAC deals with the velocities of the particles, while the SAC
deals with the pressure tensor of the system. The VAC
function can be averaged by the number of particles in the
system which improves the statistical accuracy, but the SAC
cannot since the pressure is the property of the system. An
alternative to overcome this problem for the SAC is recently
proposed16 which considers the pressure as a property of
each particle i. The application of this method to a simple
molecular system such as liquid argon shows a good
agreement with the experimental result for viscosity.15 But
the viscosity results for liquid benzen, toluene, and p-xylene
underestimate the experimental result. Other EMD simulation
study reported rather accurate results for the viscosity of
liquid benzene and toluene.17

Diffusion constants are calculated from the mean square
displacement (MSD) using the Einstein formula18:

(14)

and friction constants are obtained from the time integral of
the force auto-correlation function (FAC)19,20: 
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Figure 1. Shear viscosities (in units of cP) for liquid benzene,
toluene, and x-xylene at 293.15. Benzene* and benzene** represent
the results at the density of 0.917 and 0.939 g/cm3, respectively.

Table 2. Density (g/cm3) and pressure (atm) of the liquid benzene,
toluene, and p-xylene at 293.15 K by experiment and molecular
dynamics (MD) simulations

 benzene toluene p-xylene

density by experiment 0.87865 0.8669 0.8611
pressure by NVT MDa -1160 -1670 -1840
density by NPT MDb 0.985 1.040 0.993
density in this work 0.928 0.933 0.953
aRef. 12. The simulation density is the one by experiment. bRef. 13.

Table 3. The viscosity (η in cP), diffusion constant (D in 10−5 cm2/s), and friction constant (ζ in kg/mol·ps) of the liquid benzene, toluene,
and p-xylene at 293.15 K by equilibrium molecular dynamics (EMD) simulations

benzene (0.928)a toluene (0.933)a p-xylene (0.953)a

η  D ζ η D ζ η D ζ

 0.245 1.94 0.510(1.26)b 0.224 1.85 0.556(1.32)b 0.197 1.80 0.619(1.35)b

aDensity (g/cm3) of each simulated system. bThe values in parenthesis are friction constants obtained by Eq. (16).
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where fi(t) = Fi(t) − <Fi(t)> and Fi(t) is the total force exerted
on molecule i. We could obtain the friction constants by the
time integral of the total FAC with choosing the upper limit
of τ as the time which the FAC has the first negative value by
assuming that the fast random force correlation ends at that
time. This friction constant is related to the diffusion
constant:

ζ = kT/D. (16)

Table 3 contains the friction constants obtained from the
time integral of the FAC using Eq. (15) and from Eq. (16)
with D obtained from MSD's in Table 3. Both the friction
constants give a correct qualitative trends: decrease with
increasing temperature and increase with increasing chain
length. 
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