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Recently theab initio effective valence shell Hamiltonian methidd has been extended to treat spin-orbit
coupling in atoms or molecules. The quasidegenerate many-body perturbation theoH Inastebd has an
advantage of determining the spin-orbit coupling energies of all valence states for both the neutral species and
its ions with a similar accuracy from a single computation of the effective spin-orbit coupling operator. The
new spin-orbiH"method is applied to calculating the fine structure splittings of the valence states of $jH, SiH

and SiH* not only to assess the accuracy of the method but also to investigate the spin-orbit interaction of
highly excited states of SiH species. The computed spin-orbit splittings for ground states are in good agreement
with experiment and the few availalale initio computations. The ordering of fine structure levels of the bound

and quasi-bound spin-orbit coupled valence states of SiH and its ions, for which neither experiment nor theory
is available, is predicted.
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Introduction Recently Sun and Freed proposed another perturbation
theory for spin-orbit coupling by extending the well known
The computation of the spin-orbit coupling., the fine  effective valence shell Hamiltoniamd) method which is
structure of molecules, is relevant to an understanding dbased on quasidegenerate many-body perturbation theory.
their electronic spectra, non-radiative decays, dissociatioifhe efficiency and accuracy of the non-relativiski
mechanism and fine structure populations in photodissocimethod has already been tested and demonstrated with
ations, and more. This relativistic effect can, in principle, benumerous examples, and several studies of the convergence
calculated directly by using the four-component Diracproperties explain why these successes have been adieved.
theory, but it remains a formidable task to include the effect3he new effective valence shell spin-orbit Hamiltonian is
of electron correlation into relativistic spin-orbit coupling defined by the projection of total Hamiltonian, which is a
calculations. A widely used non-relativistic approach appendsum of the non-relativistic Hamiltoniatd and the Breit-
the approximate Breit-Pauli spin-orbit coupling operator toPauli spin-orbit coupling operatoA), onto the prechosen
the non-relativistic Hamiltonian, so the spin-orbit coupling valence space. Therefore the exact Breit-Pauli spin-orbit
operator is treated as a perturbafiéiThis approximation is  coupling operator is also projected onto the valence space,
found to be reasonable for systems where the spin-orbdnd, consequently, all diagonal and off-diagonal valence
interaction is weak or moderate. space matrix elements of the effective spin-orbit coupling
The majority of previous computations of spin-orbit operator A") are computed. In this way, Sun and Freed
couplings are based on the variation methbd, on  achieved that the influence of electron correlation is incorpo-
configuration interaction (CI) calculations. To include rated perturbatively into the effective spin-orbit coupling
electron correlation properly, large ClI calculations must beoperator A', and off-diagonal spin-orbit coupling matrix
performed, and the resulting Cl wave functions are then useelements automatically emerge along with the diagonal
to calculate the spin-orbit couplings by directly evaluatingexpectation values. In principle, tAéperturbation expansion
the expectation values of the Breit-Pauli operator. A seriouss identical to the multireference, multistate perturbation
drawback of this method arises when computing off-treatment of Fedorov and Finléyut a large difference
diagonal spin-orbit couplings between different electronicbetween the two methods arises because the effective
states because the Cl wave functions for different stategalence shell HamiltoniaH" (andA") that is unambiguously
generally involve different sets of molecular orbitals. On thedefined within the full subspace, and the matrix elements of
other hand, there have been some perturbation approachds (and A’) can be consistently used to describe any state
for spin-orbit coupling. Particularly Fedorov and Finley within the valence space.
reported the spin-orbit coupled term values for selected The use oH' (andA") has the following advantages: Once
atoms using their own spin-orbit multireference multistatethe matrix elements df¥ andA’ are evaluated, all the spin-
perturbation theors. orbit coupled valence state energies for the low-lying states
of interest are generated with balanced accuracies.AThis
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well separated? The A’ effective operator is independent of +Q = 1. In applications of the method, the space spanned by
the number of valence electrons, which implies that theP, the valence space, consists configurations with all core
states of the neutral and its ions are simultaneouslgpin-orbitals doubly occupied, excited spin-orbitals vacant,
calculated with one set &f matrix elements. The method is and all possible occupancies of the valence spin-orbitals.
size-consistent, and the forced degeneracy approach usedlo compute a molecular property that is represented by the
eliminates almost all problems from intruder states thatermitian operatof, the above theory may be applied using
plague many other multireference perturbative methods. the perturbed HamiltoniaHw = H + A, whereH is the

It is interesting to see how well the new effective valencenon-relativistic Hamiltonian as in the above equations. Since
shell spin-orbit Hamiltoniamethod produces the spin-orbit we desire only the diagonal and off-diagonal matrix elements
coupling energies of SiH species. The SiH is one ofof the operatorA between the exact normalized wave
interesting systems in photodissociation study where spirfunctions %, these matrix elements¥&| A | ¥ > may be
orbit coupling plays a crucial role in determining the producttransformed using QDMBPT into the matrix elements of an
(Si or H) distributions? In the present computations, the effective valence shell operataf between the orthonormal
valence state energies are calculated through second orderlence space eigenfunctiot$ of Heoperator,
HYin the perturbation due to electron correlation, and the
expectation values of the spin-orbit coupling operator is <Y|A|W>=<y A l.U}' >, (6)
corrected through first ord&’in electron correlation. Due
to the characteristics #f' method, all valence states of SiH Again specifying thal\’ be Hermitian and independent of
and SiH" ions as well as the neutral SiH are simultaneouslythe state ¢/ leads to the lowest nontrivial first order
investigated. The theory behind tHéand A’ formalism is  perturbative expansion,
summarized in the next section and computational procedure 1 )
and results are provided in the following sections. A’ =PAP+ EAZ\’ {P(N)VQ[E,—H;] QAP(A")

Effective Valence Shell Spin-Orbit Hamiltonian + P(NAQLE, - HO]_lQAP(/\') + h.c.}, @)

The non-relativistic effective valence shell Hamiltori#h ~ where h.c designates the Hermitian conjugate of the
is obtained by projecting the full Hamiltonian onto a valencepreceding two terms. The first order approximation to the
space that is spanned by a pre-chosen set of valence orbitaéfective operatoA’ in Eq. (7) is sufficiently accurate when
The projection can be accomplished with the aid of quasiA is small. Note that the matrix elements of the leading
degenerate many-body perturbation theory. Perturbationontribution PAP in Eq. (7) corresponds to the matdx
theory decomposes the molecular electronic (non-relativisticjvithin the P valence space, while the remainder include
HamiltonianH into a zeroth order part, and a perturbation “correlation” corrections involving configurations in the
Y/ orthogonalQ space.

H=Ho+V (1) The energy independent formA¥fcan be decomposed as

Quasidegenerate many-body perturbation theory (QDMBPT)

N
V _ AV MY 1. v
transforms the full Schrodinger equation, A=A ,Z At3 IZ 2 A

HYU=EY ) NN N
into theP space effective valence shell Schrédinger equation, * 3 Iz J.(;) () A + (8)
vy =g @
Y =B W 3) where Ny is the number of valence electron, is the

for the projectiony =P, of the exact wave functions constant contribution from the cord’ is a one-electron
onto the valence space, whereEhare the exact eigenvalues effective operator with matrix elements KA |v*> in the
of full HamiltonianH, i.e., valence orbital basis set}{ etc For the spin-orbit operator,
E, = (W|H| w0= D,U}’\HV| W @) the first ogder expansion produces the effe_ctive spin-orbit
operator A’ with up to three-electron effective operators

Aﬁk . The projectedH” (or A) is called the effective valence
shell Hamiltonian (oA’ operator).

The Breit-Pauli spin-orbit coupling operatoHs) is
substituted as the perturbation oper#tdre.,

2 Z
A=H,=Z3 5 MRi BB

The Hermitian form oH" is
1
vV _ -
H'=PHP + 2/\;,
{P(A)VQIE,—H, '"QVP(A') +h.c} +... (5)
where h.c designates the Hermitian conjugate of the

2
preceding term and®(A) = Y |A><A| designates the - %Z ) %[r_,j x g1 08 + 25 9)
projector onto the zeroth valerice space functibm, jandP P IFND T
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where the indiceg J designate the electrons,denotes the  [3s,2p,1d](1s,1p,1d).***"The core comprises ther120, 30,
nuclei, anda is the fine-structure constarﬁ. is the spinand 1T orbitals. The valence space consists @f 3o, 277
operator for electroh Fiy is the position vector of electron  and & orbitals which have their origins in the and $
from the nucleus\, p| is the momentum vector of electron valence orbitals of Si and the drbital of H. The rest of the
I, 713 is the relative position vector of electrdowith respect  higher lying orbitals are excited orbitals. Molecular orbitals
to electronJ, riy is the distance between electrbrand  are determined by performing self-consistent field (SCF)
nucleusN, ry; is the distance between electtoandJ, Zy is calculation for the groun¥?/7 state of neutral SiH. The SCF
the nuclear charge of nuclells The Breit-Pauli spin-orbit calculations also produce the orbital energies, and in
coupling operator is appropriate for describing systems witftalculations oH” andA’ the averaged value of the valence
moderate or weak spin-orbit coupling. orbital energies is used to guarantee convergence. To
The expectation values Bf from (4) andA’ from (6) may  understand the influence of basis set size, we have
be evaluated as a first approximation using the matriyperformed calculations at one internuclear distance with the
elements oH’ andA’ between the eigenfunctiotd’  Ief slightly larger aug-cc-pVQZ basis. The fine structure
An improved representation is generated when both matricesplittings obtained from the aug-cc-pVQZ basis calculations
are added together to form the spin-orbit perturbed valenceiffer only slightly (by less than 3%) from those of aug-cc-
space configuration interaction (Cl) matrix between thepVTZ basis calculations, indicating reasonable basis set
valence states. The diagonalization of the spin-orbittonvergence. Therefore the current aug-cc-pVTZ basis set is
perturbed Cl matrix yields the spin-orbit coupled energies oficcurate enough for SiH system.
all valence states simultaneously from a single computation The present calculations follow the common approxi-
of H" and A. The algebraic expressions for tAématrix mation of neglecting the two-electron contributions to the
elements in (8) are provided in the article by Sun and Preedspin-orbit coupling operator (the second term in (9)), which
describe the interaction between the spinning motion of an
Computations and Results electron and the orbiting motions of other electrons. To
compensate for the neglect of the two-electron term, an
The evaluation of the spin-orbit coupling energy using theeffective nuclear charge is introduced in the computations of
A’ formalism proceeds as follows: i) Choose a basis set. Fdhe one-electron spin-orbit coupling integrals as is
convenience, real atomic radial functions are used. Calculateustomary. The effective nuclear charges used are 1.0 au for
the necessary integrals between basis functions. We used tHeand 12.25 au for Si as obtained from the studies of Gordon
GAMESS packadgé to calculate the orbital angular and coworkers®?
momentum { = f x p ) integrals over real atomic functions. Sun and Freed's test’ calculations on SiH at a fixed
ii) Self consistent-field (SCF) calculations are performed forinternuclear distance shows that the introduction of the
the ground electronic state to generate an initial set oébove effective nuclear charges recovers the most of
molecular orbitals and orbital energies. The SCF moleculacontributions from the two-electron tefm.
orbitals are divided into three groups, the core, valence and The effective valence shell wave functions and therefore
excited orbitals. The collection of valence orbitals forms thethe energies of valence states are evaluated usingl‘'the
valence space. iii) The non-relativistic Hamiltonian and perturbation expansion through second order in correlation
spin-orbit coupling integrals in the atomic orbital basis are(V). Previous papers document the good accuracy of these
transformed to those over molecular spin-orbitals. iv)energies for the potential energy curves of the monohydfitfes.
Evaluate the matrix elements of the effective HamiltonianThe matrix elements of’ (spin-orbit) are evaluated in the
operator H' and the effective spin-orbit operat#¥. v) basis of spin-orbitals through first order in the perturbation
Construct the spin-orbit symmetry adopted configurationdue to electron correlation. The spin-orbit perturbed valence
state functions (linear combinations of Slater determinantspace Cl matrix elements (diagonal and off-diagonal) are the
corresponding to AZQ > eigenfunctions for a linear sums ofHY and A’ matrix elements between the valence
molecule like SiH) within the valence space. vi) Set up thespace eigenfunctions ofH' to include all spin-orbit
valence space Cl matrices 1d/+A’ using the second order interactions among the valence states in our calculations.
approximation of Eqg. (5) forH' and the first order The spin-orbit coupling energy, of course, depends on the
approximation of Eq. (7) fok". vii) The valence Cl matrix is geometry of a moleculeg.g, the internuclear distance
a real symmetric matrix because the matrix elemen&s of between two atoms in a diatom. TE&calculations are
are evaluated in a spin-orbital basis and because the fuyderformed at equilibrium internuclear distances) @t all
spin-orbit symmetrized configuration state functions areunperturbed (without spin-orbit coupling) bound or quasi-
used. Finally, diagonalize the CI matrix to generate theébound valence states of SiH, Sjldnd SiH*. The repulsive
eigenvalues which are the spin-orbit perturbed energies aftates and singlet of states that exhibit zero spin-orbit
the valence states. coupling are not of interest in the present calculations. For
The basis set utilized is the correlation consistent aug-caxample, SiH has many bound states whichXare a*s",
pVTZ basis, e.g, for Si the primitve (1§9p,2d,1f)  A’A, B’S", C%*, D’T*, E°S*, ¢*%7, €', A, etc?® Omitting <
Gaussian functions are contracted te,4p2d,1f] with states, we have performed calculations X&m, A%A, €',
diffuse (Is,1p,1d,1f) functions added and for H¢2p,1d) - andf*A states only. For SiH the states of interest aafl,
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Table 1. Fine structure splittings () of bound and quasi-bound However, Q=0" and Q=0 are always degenerate, for
valence states of SiH, SiHand SiH" at the equilibrium inter-  example, se@® of SiH". In Table 1 the splitting for tHe

nuclear distance @Rin au state is also listed although this is a repulsive state. The fine
State Q) Re This work Others structure splitting ofo*N is computed at the distance of
SiH 2.8501au which is the equilibrium internuclear distance of
XeMI(L/2, 312) 287175 14424  146.68142.39, €. Obviously the two splittings are different because they
142.83 are two different states. It is interesting to note that the
A2A(3/2, 5/2) 28719708 8.50 358 ordering of Q sublevels of the two states is reversed. For
b*ri(1/2, 1/2, 3/2,5/2) repulsite  60.86 atoms, when two states of the same symmetry interact with
e%(5/2, 32, 1/2, 1/2) 2.8501  45.31 each other, the ordering of fine structure levels of two states
PA(L2, 312,512, 7/2)  2.9376  9.06 are usually reversetl The energy gap betwebf1 ande'Mn
states is 0.031au so that the two states lie very closely in
SiH* energy. We see the same phenomenon here in diatomic
2N(007, 1, 2) 2906 9807 9595 system. The’l andc®M of SiH" have the same ordering of
(007, 1, 2) 3,539 101.62 fine structure levels because the two states lie very far from
1°A(1, 2, 3) 3.698 13.86 each other (see the R Table 1).
2A(1, 2, 3) 3.144 10.66 Our calculated splitting of 144.24 chior the ground®M
state of SiH is in very good agreement with experimental
SiHZ* value’* of 142.83 crit. Gordon and coworkers' MCSCF
ATI(L/2, 312) 3.50 224.97 calculation$®?' produced similar values of 146.68 and
a'n(L/2, 1/2, 312, 5/2)  4.06 86.81 142.39 crit. Baeck and Lee's four-component Dirac-Fock

. . 1
3Ref. 30.°Theoretical MCSCF value. Effective nuclear charge (au) useclcalcuIa.tlong\f1 also yleldeq a reasonable value of 148.6cm
= 1.0(H), 3.60(C), 12.25(Si). £au) = 2.1163(CH), 2.1469(CH (For Dirac-Fock calculations, see Ref. 35). ForAf® state
2.8724(SiH), 2.8724(SiH). Ref. 18.°Theoretical MCSCF-ECP value. for which experiment is not available, our splitting is 8.50

Effective nuclear charge (au) used = 1.0(H), 3.90(C), 168(Si), 1312(Ge}npy-1 ; ; ! : PV
Re(au) = 2.1163(CH), 2.1469(CH 2.8726(SiH), 3.0009(GeH). Ref. 21. k™ while Marian and coworkers' theoretical splitihis

dExperimental value. Ref. 31Ref. 32."Theoretical MRCI value. Ref.  3.58 cm'. Marian's Cl calculation is a totally different
36. “Repulsive state. Splittings computed at R=2.8501au which is th@pproach from the curreAt so that the direct comparison of
equilibriHm distance of the' state for the purpose of comparison. See two values may be meaningless. Forafi@ state of SiFl,
the text."Ref. 26.'Ref. 27.Ref. 29. . " 1
the MCSCF calculations produce the splitting of 95.95'cm
while our splitting is 98.07 cth These two values coincide
¢, 1A, and 2A.2"?8 SiH?* has two quasi-bound states of with each other very well. For the highly excited states of
A’ anda’n for which our calculations are peform@dor  SiH and SiH, experimental or theoretical data are not
quasi-bound states, the equilibrium internuclear distance iavailable. TheA’rl and a*f states of Siff for which we
the distance where the local minimum of potential energyhave first determined the fine structure splittings are quasi-
curve is located. bound states. These states are not experimentally found yet
The calculated fine structure splittings for the valencebecause their lifetime should be very short. Our splitting for
states of SiH, SiH and SiH* are presented in Table 1. As the Al state is 224.97 cthwhich is amazingly large. This
mentioned before, singleS{l) or = (A=1) states which must be due to the lone pair electronandsbital whose spin
have no fine structure splittings are not listed. The traditiona{s=1/2) produces a magnetic field coupled with its orbiting
definition of the fine structure splitting is the spacing motion strongly. Overall ok’ calculated values are in good
between two adjacenf fine structure states. Table 1 agreement with experiment and other theoretical values
presents the intervals between fdine structure levels in  although scant experimental data are available.
the order of increasing energy. For example, the entry (1/2,
3/2) in the first row of the Table 1 means that®@l/2 state Conclusions
lies lower than th&=3/2 state. For the’ of SiH', (0/07,
1, 2) means that th€=0" and Q=0 states which are The effective valence shell spin-orbit Hamiltonian method
degenerate (but are not necessarily degenerate in general) H& has been applied to determine the fine structure splittings
lowest and th€=1 state lies higher, while tlfe=2 state lies of all bound and quasi-bound valence states of SiH;,SiH
highest. For each state, spin-orbit coupling produces variousnd SiH*. For the low-lying states our calculated fine
Q states but their intervals (equal to the fine structurestructure splittings agree very well with experiment or other
splittings) always emerge as the same. theories. Our calculations provide fine structure splittings for
In SiH, the X2 state exhibits a larger fine structure a wide range of excited and ion states for which there are no
splitting than that oA?A, as expected. The trend is the sameprior experimental data or computations. Also the ordering
for quartet state.g, €' andf “A. In SiH, the splitting for  of the fine structur& sublevels are predicted for spin-orbit
M states is again much larger than thah states. Tha’ perturbed valence states for the first time. It is interesting to
state of Sil" has four fine structure levels §=1/2, 1/2,  construct a composite picture of potential energy curves. We
3/2, and 5/2. The twd2=1/2 states are not degenerate. will report H' calculations on potential energy curves for all
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spin-orbit perturbed valence states of SiH species including5. Woon, D. E.; Dunning, Jr., T. H. Chem. Phys1993 98,

repulsive states in the near future.
The present work verifies that the né# perturbation

approach for calculating spin-orbit couplings properly include; 7.

16.

off-diagonal spin-orbit matrix elements that are important in

predissociation and other non-adiabatic processes.Hrhis

approach shows how to deal with the complex problem
arising from the fact that the perturbation due to electron

correlation influences the effective spin-orbit operator.

Though only the one-electron spin-orbit operator is used
(with a proper effective nuclear charge) to calculate the fine
structure splittings, the calculations show very satisfactory

agreement with experiment. It suffices to demonstrate th
the new effective valence shell spin-orbit Hamiltonian
method performs very well.
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