Synthesis of ω -Iodoalkan-1-ols from α , ω -Diols¹

Suk-Ku Kang[†], Won-Sup Kim, and Byoung-Ho Moon

Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 170, Korea (Received July 15, 1985)

ω-Iodoalkan-1-ol acetate or ω-iodoalkan-1-ol THP ether, the protected forms of ω -iodoalkan-1-ol is of special value in the synthesis of natural products, particularly in the synthesis of insect pheromones. The iodo-portion of the ω -iodoalkan-1-ol acetate or ω-idoalkan-1-ol THP ether can be converted to Wittig reagent with triphenylphosphine, substituted by nucleophiles,2 or coupled with Grignard reagent.3

ω-Iodoalkan-1-ol acetate and ω-iodoalkan-1-ol THP ether were supposed to be easily prepared from the corresponding ω-iodoalkan-1-ol by acetylation or protection reaction. Unexpectedly, in the literature, ω -iodoalkan-1-ols were not known. Normant reported4 the synthesis of 8-iodooctan-1-ol acetate from 8-bromooctan-1-ol5 by acetylation with acetic anhydride followed by nuclophilic displacement with sodium iodide. Oku reported the preparation of 4-iodobutan-1-ol acetate from tetrahydrofuran by reacting with hydriodic acid and acetic anhydride in the presence of zinc dust. No direct conversion of diols into ω -iodoalkan-1-ols was reported.

Search for the preparation of ω-iodoalkan-1-ol and direct method for the preparation of ω -iodoalkan-1-ols from α , ω diols is very worthwhile.

Now we wish to report an effective synthesis of ω-iodoalkan-1-ol from diol without any diiodoalkane formed or diol remained.

TABLE 1: Monoiodoalkanols (2) prepared from Diols (1)^e

Product I (CH ₂) _n OH		Reaction Time [hr]	Yield* [%]	b.p. [°C]/torr ^c Observed
2a	n = 2	20	30	45- 47/3
2b	3	4	61	58- 60/3
2c	4	4	74	70- 72/3
2d	5	6	88	80- 82/3
2f	6	6	84	84- 87/3
2g	7	20	86	110-112/3
2h	8	20	80	116-119/3
2i	9	20	85	126-129/3
2j	10	20	87	140-143/3
2k	12	20	80	150-153/3

^a Consistent spectral data were obtained on all compounds reported.

HO (CH₂) nOH
$$\stackrel{\text{HI}}{\rightarrow}$$
 I (CH₂) nOH

1

2

n=2-12

The efficient conversion of diols into monoiodoalkanols was accomplished using Dean-Stark trap apparatus. Refluxing a solution of diol, aqueous HI (55%) and toluene while trapping water with a Dean-Stark water separator by making the reacting bath nonpolar afforded the pure monoiodoalkanol (Table). The purity of the products is greater than 99% by H.P.L.C. analysis.

A typical procedure is as follows. To a solution of 1, 10decanediol (0.35g) and toluene (40 ml) was added hydriodic acid (55%, 0.27 ml), and the reaction mixture was heated at reflux for 20 hr while trapping water with a Dean-Stark water separator. The solvent was evaporated under reduced pressure and the residue was extracted with ether, washed with H2O and 10% sodium thiosulfate, and saturated sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and evaporated under reduced pressure. The residue was distilled on Kugelrohr to afford 10-iododecan-1-ol (2j) (0.49g, 87%, b.p. 340-143°C/3 torr). The product was analyzed by H.P.L.C..

Referer ces

- (1) ω -Bromoalkan-1-ols were efficiently prepared from α , ω diols and aqueous hydrobromic acid using Dean-Stark trap; S-K. Kang, W-S. Kim, and B-H. Moon, Synthesis, in press, (1985)
- (2) G. Cardillo, Gazz. Chim. Ital., 112, 231 (1982).
- (3) J.C. Stowell, and B.T. King, Synthesis, 278 (1984).
- (4) A. Oku, T. Harada, and K. Kita, Tetrahi dron Letters, 23, 681 (1982).
- (5) 8-Bromooctan-1-ol was prepared from 1,8-octanediol and aqueous hydrobromic acid using continuous extraction apparatus: J.H. Babler, and B.J. Invergo, J. Org. Chem., 44 (21), 3723 (1979); O.L. Chapman, K.C. Mattes, R.S. Sheridan, and J.A. Klun, J. Am. Chem. Soc., 100, 4878 (1978).
- (6) M. Gardette, A. Alexakis, and J.F. Normant, J. Chem. Ecol., 9 (2), 225 (1983).

b Yield of isolated pure product. H.P.L.C. analysis of the reaction mixture shows that all the monoiodoalkanols were produced in almost pure state. 'Kugelrohr distillation (bath temperature given).