- 12. A 9:1 mixture of 1,2- and 2,4-isopropylidenebutane-1,2,4-triol was used. Meyers, A. I.; Lawson, J. P. *Tetrahedron Lett.* 1982, 23, 4883-4886.
- 13. The isomeric ratios of oxazolines and dihydro-1,3-oxazines were the same as those of aziridines.
- 14. The product generated from the hydride attack to aziridine 19 was formed in 10% yield (i.e. R=H).
- 15. All new compounds showed satisfactory spectral data.

Chemoselective Reduction of Carbonyl Compounds with Diisobutylethoxyalane

Jin Soon Cha*, Oh Oun Kwon, Sang Yong Kwon, Jong Mi Kim, Wone Woo Seo, and Seok Won Chang

> Department of Chemistry, Yeungnam University, Kyongsan 712-749, Korea

> > Received November 30, 1995

Very recently, we reported that diisobutylchloroalane (i-Bu₂-AlCl) is a highly selective reducing agent for the competitive reduction between carbonyl compounds¹ and for the 1,2-reduction of α , β -unsaturated carbonyl compounds.² In continuation of our efforts to explore new reducing systems for such transformations, we prepared a series of diisobutylalko-xyalane (i-Bu₂AlOR) and examined the reducing action toward general organic functional groups. In the course of this systematic investigation, we found that the ethoxy derivative, diisobutylethoxyalane (i-Bu₂AlOEt), reduces aldehydes in a fast rate but ketones only slowly. Accordingly, we applied this reagent for the competitive reduction between carbonyl compounds. Herein, we report the results for such selective reduction by i-Bu₂AlOEt in ethyl ether.

The reagent can be readily prepared by alcoholysis of dissobutylaluminum hydride (i-Bu₂AlH) in ether solution (Eq. 1). The reagent is effective for the reduction of aldehydes and ketones at 25°. As in the case of i-Bu₂AlCl, the reduction with i-Bu₂AlOEt involves hydride shift from the β -carbon atom of isobutyl group.

$$i$$
-Bu₂AlH + EtOH $\frac{\text{Et}_2\text{O}}{0^{\circ}}$ i -Bu₂AlOEt + H₂ \uparrow (1)

The reduction of representative aldehydes and ketones with 10% excess reagent at 25° in ethyl ether is listed in Table 1. Aldehydes are reduced readily in less than 1 or 3 h, while ketones are reduced slowly requiring 48 hrs for completion.

The chemoselectivity of this reagent was tested with twenty-four representative pairs in competition experiments. Equimolar amounts of two compounds were allowed to compete for a limited quantity of i-Bu₂AlOEt (1 equivalent). A standard solution of the reagent (ca. 1 M) in ethyl ether was added to the equimolar mixture of two compounds (ca. 1 M in each compound) in ethyl ether maintained at 25°.

Table 1. Reduction of Representative Aldehydes and Ketones with Diisobutylethoxyalane in Ethyl Ether at 25 $^{\circ}$ C^a

Compound	Product	Time (h)	Yield (%)
Butanal	1-Butanol	1.0	96
		3.0	100
Benzaldehyde	Benzyl alcohol	0.5	98
		1.0	100
2-Butanone	2-Butanol	24	90
		48	100
Acetophenone	1-Phenyl ethanol	24	95
		48	100

^aTen % excess reagent was utilized. Reaction mixtures were ca. 1 M in substrates. ^bDetermined by GC using internal standard.

Table 2. Chemoselective Reduction of Carbonyl Compounds with Diisobutylethoxyalane in Ethyl Ether at 25 $^{\circ}$ C^a

Entry	Starting mixture	Time (h)	Ratio of redn products ^b
1	Butanal/Hexanal	12	60 : 40
2	Butanal/Benzaldehyde	3	5:95
3	Butanal/Anisaldehyde	6	95: 5
4	Hexanal/Benzaldehyde	3	2:98
5	Hexanal/Anisaldehyde	6	92: 8
6	Benzaldehyde/Anisaldehyde	3	99.5 : 0.5
7	Butanal/Cyclohexanone	6	100: 0
8	Hexanal/Cyclohexanone	6	100: 0
9	Hexanal/2-Heptanone	6	100: 0
10	Hexanal/Acetophenone	6	100: 0
11	Hexanal/Benzophenone	6	100: 0
12	Anisaldehyde/Cyclohexanone	12	99: 1
13	Cyclohexanone/2-Heptanone	24	100: 0
14	Cyclohexanone/Acetophenone	24	95: 5
15	Cyclohexanone/Benzophenone	24	100: 0
16	Acetophenone/2-Heptanone	48	100: 0
17	2-Heptanone/Benzophenone	96	95 : 5
18	Acetophenone/Benzophenone	48	100: 0
19	Cyclohexanone/Cyclopentanone	24	90:10
20	Hexanal/Hexanoyl Chloride	6	100: 0
21	Hexanal/Benzoyl Chloride	6	100: 0
22	2-Heptanone/Benzoyl Chloride	96	99: 1
23	Hexanal/Hexanenitrile	6	100: 0
24	Hexanal/Ethyl Hexanoate	6	100: 0

^aReaction mixtures were ca. 1 M in substrates. One equivalent of reagent was utilized for competitive reduction of equimolar mixture of two carbonyl compounds. ^b Normalized ratio determined by GC with appropriate internal standard; the total yields of product alcohols were $\geq 99\%$.

After appropriate time intervals, the mixture was hydrolyzed with 3 N HCl. The results obtained by GC analysis of the reaction mixture with an internal standard are summarized in Table 2.

Both aliphatic and aromatic aldehydes examined are selec-

tively reduced in the presence of ketones (Entries 9-11): a wide variety of aldehydes is selectively reduced in the presence of a more reactive ketone, cyclohexanone (Entries 7, 8 and 12). Even more remarkable is the chemoselective discrimination between aldehydes. Thus, benzaldehyde can be selectively reduced in the presence of hexanal (Entries 2 and 4) or anisaldehyde (Entries 6). Hexanal is much more reactive than anisaldehyde toward this reagent (Entries 3 and 5). Furthermore, the reagent can discriminate between structurally different ketones (Entries 13 - 18). Even cyclohexanone can be selectively reduced in the presence of cyclopentanone in a 90:10 selectivity (Entry 19). In addition, various representative functional groups, such as ester, lactone, amide, nitrile, alkene, alkyne, and anhydride, are not affected by i-Bu₂AlOEt. Furthermore, even acid chlorides are inert to the reagent. Such a remarkable inertness toward most of the reducible functional groups, combined with a high selectivity for the reduction of aldehydes and ketones, has already been realized with i-Bu₂AlCl.^{1,2} However, the reducing power of i-Bu₂AlOEt is much weaker than that of i-Bu₂ AlCl and, hence, seems to be more applicable for such transformations in complex molecules.

Acknowledgment. This study was supported by the Yeungnam University research grants in 1995.

References

- Cha, J. S.; Kwon, O. O.; Kwon, S. Y.; Kim, J. M.; Seo, W. W.; Chang, S. W. Synlett 1995, 1055.
- Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Bull. Korean Chem. Soc. 1995, 16, 1009.

3. For other reducing agents; (a) Hutchins, R. O.; D. Kandasamy, J. Am. Chem. Soc. 1973, 95, 6131. (b) Gribble, G. W.; Ferguson, D. C. J. Chem. Soc., Chem. Commun. 1975, 535, (c) Sell, C. S. Australian J. Chem. 1975, 28, 1383. (d) Maki, Y.; Kikuchi, K.; Sugiyama, H.; Seto, S. Tetrahedron Lett. 1977, 263. (e) Posner, G. H.; Runquist, A. W.; Chapdelaine, M. J. Org. Chem. 1977, 42, 1202. (f) Brown, H. C.; Kulkarni, S. V. Ibid. 1977, 42, 4169. (g) Yoon, N. M.; Cha, J. S. J. Korean Chem. Soc. 1978, 22, 259. (h) Fung, N. Y. M; deMayo, P.; Schauble, J. H.; Weedorn, A. C. J. Org. Chem. 1978, 43, 3977. (i) Midland, M. M.: Tramontano, A. Ibid. 1978, 43, 1470. (i) Risbood, P. A.; Ruthoven, D. M. Ibid. 1979, 44, 3969. (k) Sorrell, T. N.; Pearlman, P. S. *Ibid.* **1980**, 45, 3963. (1) Fleet, G. W. I.; Harding, P. J. C. *Ibid.* 1981, 46, 675. (m) Krishnamurthy, S. J. Org. Chem. 1981, 46, 4628. (n) Yoon, N. M.; Park, G. B.; Gvoung, Y. S. Tetrahedron Lett. 1983, 5367. (o) Kim, S.; Kang, H. J.; Yang, S. Tetrahedron Lett. 1984, 2985. (p) Kim, S.; Yang, S. Bull. Korean Chem. Soc. 1988, 9, 188. (q) Ward, D. E.; Rhee, C. K. Synth. Commun. 1988, 18, 1927. (r) Ward. D. E.; Rhee, C. K.; Zoghaib, W. M. Tetrahedron lett. 1988, 29, 517. (s) Maruoka, K.; Araki, Y.; Yamamoto, H. Ibid, 1988, 29, 3101. (t) Ranu, B. C.; Chakkraborty, R. Ibid, 1990, 31, 7663. (u) Sarkas, D. C.; Das, A. R.; Ranu, B. C. J. Org. Chem. 1990, 55, 5799. (v) Fiouzabadi, H.; Tamami, B.; Goudarzian, N. Synth. Commun. 1981, 21, 2275. (w) Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kim, J. M. Synlett 1995, 331. (x) Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kwon, S. Y.; Seo, W. W.; Chang, S. W. Org. Prep. Proced. Int. 1995, 27, 549.