- Soc. 1992, 114, 5230.
- Lee, W.; Do, Y. R.; Dwight, K.; Wold, A. Mater. Res. Bull. 1993, 28, 1127.
- Do, Y. R.; Lee, W.; K. Dwight; Wold, A. J. Solid State Chem. 1994, 108, 198.
- Albert, M.; Gao, Y-M.; Toft, D.; Dwight, K.; Wold, A. Mater. Res. Bull., 1992, 27, 961.
- 10. Tanbe, K.; Ishiya, C.; Matsuzaki, I.; Ichikawa, I.; Hattori, H. Bull. Chem. Soc. Japan, 1972, 45, 47.
- 11. Gerischer, H.; Heller, A. J. Phys. Chem. 1991, 95, 5261.
- Tennakone, K.; Heperuma, O. A.; Bandara, J. M. S.; Kiridena, W. C. B. Semicond. Sci. Technol. 1992, 7, 423.
- Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. J. Solid State Chem. 1991, 92, 178.
- 14. Hilbrig, F.; Gel, H. E.; Kninger, H.; Schmelz H.; Lengeler, B. J. Phys. Chem. 1991, 95, 6973.

Synthesis and Crystal Structure of Bis[(η⁵-Cp)tris-(dimethylphosphito-P)cobalt-O,O',O"][acetylacetonato]Yttrium(III)

Kyung-Chae Kim, Yu-Chul Park, and Jong Hwa Jeong*

Department of Chemistry, Kyungpook National University, Taegu 702-701, Korea Received March 15, 1997

Homoleptic β-diketonato complexes of yttrium have been extensively studied, which are useful precursors for Y123 superconducting material due to high vapor pressure. However, heteroleptic yttrium complexes of β-diketonatonate are rare.2 In our laboratory, yttrium complex containing Odonor tripodal ligands (L=CpCo[P(O)(OMe)₂]₃), L₂YCl, has been used to prepare an acetato complex of YL2, in which the acetate ligand has been bound to yttrium ion in an isobidentate type to form four-membered ring.3 This result implies the ligand L is bulk enough to prevent formation of polynuclear yttrium complex. Therefore, this fact has prompted us to investigate the chemical bonding behavior of acetylacetonato (acac) ligand toward YL2 moiety since the ligand is more crowded than acetate and able to form six-membered ring. Here we wish to report the synthesis and X-ray structure of an acetylacetonato complex of YL₂.

Experimental

Solvents were purified by standard methods and were freshly dried and distilled prior to use. Potassium acetylacetonate hemihydrate was purchased from Aldrich Co. and dried using P₂O₅. NaL was prepared by the literature method.⁴ All manipulations were performed under an argon atmosphere using a double manifold vacuum system and Schlenk techniques at room temperature.

¹H and ¹³C NMR spectra were obtained in CDCl₃ and referenced to the deuterated solvent (δ 7.14 ppm for ¹H, 77.0 ppm for ¹³C) on a Bruker AM-300 spectrometer. FT-IR spectrum was obtained on a Bomen Michelson 100 spectrometer as KBr pellet. Chemical analyses were carried out by the Chemical Analysis Laboratory at Korea Basic Science Institute.

Preparation of L₂ (acac) Y. 20 mL of dry THF was introduced to a mixture of 0.49 g (1.0 mmol) of NaL and 0.10 g (0.5 mmol) of YCl₃. The mixture was stirred at

room temperature for 24 h resulting yellow solution and precipitate. The solution was transferred to 0.07 g (0.5 mmol) of potassium acetylacetonate in 20 mL of THF. The resulting suspension was stirred at room temperature for 2 days and then the precipitate was filtered off. The filtrate was evaporated *in vacuo* to afford yellow solid. Recrystallization of the crude product from THF solution gives yellow crystals in 75% yield (0.4 g).

Analysis: Calcd. (%) C; 30.68, H; 5.46 Found (%) C; 30.52, H; 5.37.

 1 H NMR (CDCl₃): δ 5.30 (s, -COCH=C-, 1H) δ 4.99 (s, 2C₅H₅, 10H), δ 3.74 (m, 12H₃C-O-P, 36H), δ 1.90 (s, H₃CCO-, 6H)

¹³C NMR (CDCl₃): δ 186.2 (s, C=O), δ98.4 (s, CH=), δ 88.8 (s, C₅H₅), δ 51.3 (m, H₃COP), δ 27.3 (s, H₃C-)

IR (cm⁻¹): 2943 (m), 2837 (w), 1620 (m), 1513 (m), 1462 (w), 1263 (m), 1016 (vs)

X-ray crystallographic analysis. An X-ray quality single crystal, $0.30 \times 0.30 \times 0.50$ mm, was mounted in a thinwalled glass capillary on an Enraf-Nonius CAD-4 diffractometer with Mo-K α radiation (λ =0.71073 Å). Unit cell parameters were determined by least-squares analysis of 25 reflections (10°<θ<13°). Intensity data were collected with θ range of 3.29-30.40° in $\omega/2\theta$ scan mode. Three standard reflections (h k l = 5 - 7 3; 5 7 6; -3 - 2 8) were monitored every 1 hr during data collection, which was showing not significant variation. The data were corrected for Lorentz-polarization effects and decay. Empirical absorption corrections with Ψ scans were applied to the data. The structure was solved by using Patterson method and refined by full-matrix least-squares techniques on F² using SHELXS-865 and SHELXL-93.6 All non-hydrogen atoms were refined by using anisotropic thermal factors, and all hydrogen atoms were positioned geometrically using riding model with 1.2 times isotropic thermal factors of the attached nonhydrogen atoms. The final cycle of the refinement con-

Table 1. Crystal data and structure refinement for L₂ (acac) Y

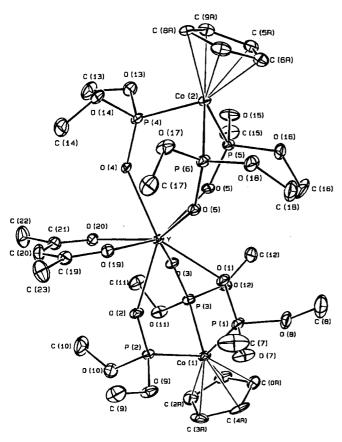
Table 1. Crystal data and structure refinement for L_2 (acac) Y			
Empirical formula	$C_27H_{53}Co_2O_{20}P_6Y$		
Formula weight	1090.28		
Temperature	293(2)K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	ΡĬ		
Unit cell dimensions	$a=11.408(3) \text{ Å } \alpha=71.21(2)^{\circ}$		
	b=12.633(2) Å β=88.14(2)°		
	c=17.470(5) Å γ=67.56(2)°		
Volume	2191.3(9) Å ³		
Z	2		
Density (calculated)	1.652 Mg/m ³		
Absorption coefficient	2.352 mm ⁻¹		
F(000)	1116		
Crystal size	$0.30\times0.30\times0.50$ mm		
Theta range for data collection	3.29 to 30.40°		
Index ranges	$-16 \le h \le 14, -17 \le k \le 0,$		
	-24≦1≦23		
Reflections collected	11641		
Observed reflections	6188		
Absorption correction range	62.45-99.88%		
Refinement method	Full-matrix least-squares on F ²		
Data/restraints/parameters	6170/0/505		
Goodness-of-fit on F ²	1.075		
Final R indices $[I>2\sigma(I)]$	$R_1=0.0669$, $wR_2=0.1158$		
R indices (all data)	$R_1=0.0905$, $wR_2=0.1328$		
Largest diff. peak and hole	0.853 and -0.909 e.Å ³		
D -5 2 3 7 3	$(\Sigma_{-}/(E^2 + E^2)^2 / \Sigma_{-}/(E^2)^2)^{1/2}$ 1 /		

R₁= $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, wR₂= $[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$, w=1/ $[\sigma 2 (Fo^2) + (0.0433 * P)^2 + 5.60 * P]$ where P = (Max.(Fo², 0)+2 * Fc²)/3

verged with R_1 =0.067 and wR_2 =0.116. Crystal data, details of the data collection, and refinement parameters are listed in Table 1. Selected bond distances and angles are presented in Table 2.

Results and Discussion

Prepared [L₂YCl] from the reaction of YCl₃ with 2 equivalent NaL reacts with potassium acetylacetonate to yield the title compound.


$$YCl_3 + 2 \text{ NaL} \xrightarrow{-2NaCl} [L_2YCl] \xrightarrow{+K \text{ (acac)}} L_2 \text{ (acac) } Y$$

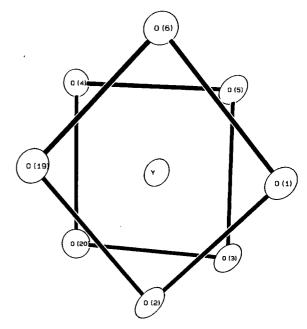
The ¹H NMR spectrum of the compound shows a singlet at 5.30 ppm for -COCH=C-(1H), a singlet at 4.99 ppm for 2 Cp rings (10H), a multiplet at 3.74 ppm for H₃C-O-P (36H), and a singlet at 1.90 ppm for H₃CCO-(6H). The ¹³C NMR spectrum reveals singlets at 186.2, 98.4, and 27.3 ppm for C=O, -CH= and H₃C- at the acac ligand and a singlet at 88. 8 for C₅H₅), a multiplet at 51.3 ppm for H₃COP at the tripodal ligands. Since these data illustrated uncertain structural information, X-ray crystal structure determination has been carried out. Figure 1 shows an ORTEP⁷ drawing with atomic labeling scheme of the compound. The coordination polyhedrons around the yttrium presented in Figure 2 is nearly a square antiprism consisting of O(1), O(2), O(3), O (4), O(5), O(6) via two tripodal groups and O(19), O(20)

Table 2. Selected bond distances (Å) and angles ($^{\circ}$) for L₂ (acac) Y

(acae) 1			
Y-O(1)	2.373(5)	Y-O(2)	2.362(5)
Y-O(3)	2.315(5)	Y-O(4)	2.368(4)
Y-O(5)	2.371(5)	Y-O(6)	2.336(5)
Y-O(19)	2.338(5)	Y-O(20)	2.319(5)
Co(1)-P(1)	2.164(2)	Co(1)-P(2)	2.156(2)
Co(1)-P(3)	2.184(2)	Co(2)-P(4)	2.157(2)
Co(2)-P(5)	2.167(2)	Co(2)-P(6)	2.170(2)
O(1)-P(1)	1.497(5)	O(2)-P(2)	1.492(5)
O(3)-P(3)	1.502(5)	O(4)-P(4)	1.486(5)
O(5)-P(5)	1.494(5)	O(6)-P(6)	1.483(5)
P(1)-O(7)	1.604(6)	P(1)-O(8)	1.609(6)
P(2)-O(10)	1.588(6)	P(2)-O(9)	1.600(6)
P(3)-O(11)	1.604(6)	P(3)-O(12)	1.604(6)
P(4)-O(14)	1.611(5)	P(4)-O(13)	1.619(6)
P(5)-O(15)	1.599(6)	P(5)-O(16)	1.613(6)
P(6)-O(17)	1.600(6)	P(6)-O(18)	1.611(5)
O(3)-Y-O(20)	77.0(2)	O(3)-Y-O(6)	141.8(2)
O(20)-Y-O(6)	139.5(2)	O(3)-Y-O(19)	140.9(2)
O(20)-Y-O(19)	75.9(2)	O(6)-Y-O(19)	73.7(2)
O(3)-Y-O(2)	75.5(2)	O(20)-Y-O(2)	75.6(2)
O(6)-Y- $O(2)$	117.7(2)	O(19)-Y-O(2)	70.9(2)
O(3)-Y-O(4)	116.9(2)	O(20)-Y-O(4)	70.3(2)
O(6)-Y-O(4)	78.1(2)	O(19)-Y-O(4)	79.1(2)
O(2)-Y-O(4)	138.9(2)	O(3)-Y-O(5)	76.3(2)
O(20)-Y-O(5)	116.1(2)	O(6)-Y-O(5)	75.7(2)
O(19)-Y-O(5)	141.7(2)	O(2)-Y-O(5)	145.7(2)
O(4)-Y-O(5)	72.4(2)	O(3)-Y-O(1)	75.9(2)
O(20)-Y- $O(1)$	143.8(2)	O(6)-Y-O(1)	74.0(2)
O(19)-Y-O(1)	112.6(2)	O(2)-Y-O(1)	74.8(2)
O(4)-Y-O(1)	144.5(2)	O(5)-Y-O(1)	79.8(2)
P(2)-Co(1)- $P(1)$	88.51(9)	P(2)-Co(1)-P(3)	90.89(9)
P(1)-Co(1)-P(3)	92.44(9)	P(4)-Co(2)-P(5)	89.03(9)
P(5)-Co(2)-P(6)	91.44(9)	P(4)-Co(2)-P(6)	90.00(9)
C(19)-O(19)-Y	132.7(5)	C(21)-O(20)-Y	133.7(5)
O(19)-C(19)-C(20)	125.2(8)	O(19)-C(19)-C(23)	115.8(8)
C(20)-C(19)-C(23)	119.0(8)	C(21)-C(20)-C(19)	125.8(8)
O(20)-C(21)-C(20)	125.9(8)	O(20)-C(21)-C(22)	116.6(8)
C(20)-C(21)-C(22)	117.5(8)		

from the acac ligand although a heteroleptic complex. Four atoms of O(1), O(2), O(19), and O(6) are almost in the plane also four atoms of O(3), O(5), O(4), and O(20) are nearly coplanar. The distances of latera are 2.698(7) to 2.895(7) Å and the angles of eight conners are 87.0(2) 0 to 93.3(2)°. The twist angle of two squares is 46.9(2)°. Distances of Y-O(1), Y-O(2), Y-O(3), Y-O(4), Y-O(5), Y-O(6), Y-O(19), and Y-O(20) are 2.373(5), 2.362(5), 2.315(5), 2.368(4), 2.371(5), 2.336(5), 2.338(5), and 2.319(5) Å, respectively. All Y-O distances are nearly not distinguishable whether they are those between yttrium and oxygen atoms of L or acac. This feature is different from that in L (acetato) Y, in which lengths between yttrium and oxygen atoms of L are shorter than those of acetate ligand.3 This means that the negative charge at L is fully delocalized as if the charge at acac is not localized. Distances of P-O(1), P-O(2), P-O(3), P-O(4), P-O(5), and P-O(6) are 1.497(5), 1.492(5), 1.502(5), 1.486(5), 1.494(5), and 1.483(5) Å. The 672

Figure 1. ORTEP drawing of 40% probability displacement ellipsoid. Hydrogen atoms are omitted for clarity.


mean distance between P and O attached yttrium atom is 1.492(6) Å, which is somewhat longer than P=O distance (1.46(5) Å)⁸, suggesting that Y-O bonds have partial double bond character.

Acknowledgment. This research has been supported financially by the Korea Science and Engineering Foundation and Basic Science Research Institute Program of Ministry of Education in Korea.

Supplementary Material Available. Tables of atomic coordinates and equivalent isotropic displacement parameters for non-hydrogen atoms (2 pages), bond distances and angles (3 pages), anisotropic displacement parameters (2 pages), hydrogen coordinate and isotropic displacement parameters (2 pages), and observed and calculated structure factors (19 pages) are available from J. H. J..

References

1. (a) Yamane, H.; Kurosawa, H.; Hirai, T.; Watanabe, K.; Iwasaki, H.; Kobayashi, N.; Muto, Y. J. Cryst. Growth 1989, 98, 860. (b) Noh, D. W.; Gallio, B.; Chern, C. S.; Caracciolo, R.; Keer, B. H.; Zawadzki, P. A.; Tompa, G.

Figure 2. ORTEP drawing of the molecule showing the coordination ployhedron around the yttrium. O(1)-O(2) 2.876(7), O (1)-O(6) 2.834(7), O(2)-O(19) 2.725(7), O(19)-O(6) 2.804(7), O (3)-O(20) 2.883(7), O(20)-O(4) 2.698(7), O(4)-O(5) 2.798(7), O (5)-O(3) 2.895(7). O(2)-O(1)-O(6) 89.5(2), O(1)-O(2)-O(19) 88.8(2), O(2)-O(19)-O(6) 93.3(2), O(19-O(6)-O(1) 88.1(2), O(5)-O(3)-O(20) 87.0(2), O(3)-O(20)-O(4) 91.2(2), O(20)-O(4)-O(5) 92.8(2), O(4)-O(5)-O(3) 89.0(2).

- S.; Norris, P. E. J. Appl. Phys. 1989, 66, 5099. (c) Bai, G. R.; Tao, W.; Wang, R.; Xie, L. M.; Zhang, X. K.; Huang, J.; Qian, C. T.; Zhou, W. K.; Ye, C. Q. Appl. Phys. Lett. 1989, 55, 194. (d) Berry, A. D.; Gaskill, D. K.; Holm, R. T.; Cukauskas, E. J.; Kaplan, R. Henry, R. L. Appl. Phys. Lett. 1988, 52, 1743.
- (a) Barash, E. H.; Coan, P. S.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K. G. *Inog. Chem.* 1993, 32, 497. (b) Yang, Y.; Zhou, X. *Spectros. Lett.* 1991, 24, 175. (c) Poncelet, O.; Hubert-Pfalzgraf, L. G.; Daran, J. C. *Polyhedron* 1990, 9, 1305.
- Kim, N. H.; Yeo, H. J.; Jeong, J. H. Bull. Korean Chem. Soc. 1996, 17, 483.
- 4. Kläui, W. Z. Naturforsch. 1979, B34, 1403.
- 5. Sheldrick, G. M. SHELXS-86, Program for the solution of crystal structures. Univ. of Göttingen, Germany, 1985.
- Sheldrick, G. M. SHELXL-93, Programs for crystal structure refinement. Univ. of Göttingen, Germany, 1993.
- 7. Johnson, C. K. *OTREPII*, Oak Ridge National Laboratory, Tennessee, USA, 1976.
- 8. Corbridge, D. E. C. *The Structure of Chemistry of Phosporus*, 5th ed.; Elservier Publishing Co.: Amsterdam, 1995, Chapter 4.