LETTERS # A Short Synthesis of (Z)-7-Eicosen-11-one, the Pheromone of Peach Fruit Moth #### Suck-Ku Kang† and Hyun-Sung Cho Department of Chemistry, Sung Kyun Kwan University, Natural Scienec Campus, Suwon 170, Korea (Received November 28, 1983) (Z)-7-Eicosen-11-one, an active component of the famale sex pheromone of the peach fruit moth, *Carposina niponenesis* Walsingham, a major economic pest of apple, peach and other fruits, was isolated by Tamaki¹ in 1977. Several syntheses of (Z)-7-eicosen-11-one have been reported². To our knowledge, the direct conjugate addition of alkalior alkaline earthacetylides^{3,4} to enone system has not previously been observed in the literature, but a few examples of conjugate addition of alkynyl organoboranes⁵ and alkyl organolanes⁶ to α , β -unsaturated ketones have been known. We wish to report a short synthesis of the title compound (1) based on conjugate addition of organoborane to α , β -unsaturated ketone system. Lithium 1-octynide was obtained from 1-octyne (2) using n-BuLi (1.0 mol equiv.) in dry THF at -78°C. This acetylide was treated *in. situ*, with B-methoxy-9-BBN (1.0 mol equiv.) and the reaction mixture was strirred for 2 hr at -78°C. Then boron trifluoride diethyl etherate (1.3 mol equiv.) was added and the mixture was stirred for 1 h at -78°C and allowed to warm to room temperature. From the reaction mixture, the volatiles were distilled off to yield a yellow solid which was supposed to be B-1-octynyl-9-BBN (3). This solid was dissolved in dry pentane and 1-dodecen-3-one⁷ Scheme 1 (4) was added and stood overnight at room temperature. After work-up, 7-eicosyn-11-one was obtained by Kugelrohr distillation (b. p.) $109-118^{\circ}\text{C}/10^{-3}\text{ mm}$) in 46 % overall yield from 1-octyne (2), IR (neat) 2260, 1720, 1450, 1370 cm⁻¹; NMR (CDCl₃) δ_{TMS} 0.90 (6H), 1.05-1.75 (22H), 1.90-2.60 (8H). Catalytic hydrogenation with palladium on barium sulfate afforded the desired (Z)-7-eicosen-11-one⁸ (1), IR (neat) 2940, 1720, 1460, 1375 cm⁻¹; NMR (CDCl₃) δ TMS 0.90 (6H), 1.10-1.70 (22H), 1.80-2.75 (8H), 5.35 (2H); MS, m/e 295 (M⁺). Acknowledgement. We thank the Korea Science and Engineering Foundation for financial support. #### References - (1) Y. Tamaki, K. K. Honma and K. Kawasaki, *Appl. Entmol. Zool.*, **12**, 60 (1977). - (2) (a) Y. Naoshima, M. Kawakubo, S. Wadayabashi and S. H. Hayashi, Agric. Biol. Chem., 45, 439 (1981): (b) K. Mori, S. Tamada and M. Matsui, Agric. Biol. Chem., 42, 191 (1978); (c) Sagami Chemical Research Center Japan Kokai Tokkyo Koho JP 81, 118 036 (Chemical Abstract 96 68339e). - (3) G. H. Posner, Cu-acetylides do not add to enones, *Org. React.* 19, 1 (1972); E. J. Corey and D. J. Beams, *J. Amer. Soc.*, 94, 7210 (1972). - (4) R. Locher and D. Seebach, Angew. Chem. Int. Ed. Engl.,20, 569 (1981). - (5) (a) M. Bruhn, C. H. Brown, P. W. Collins, J. R. Palmer, E. Z. Dajani and R. Pappo, *Tetrahedron Lett.*, 32, 235 (1976); (b) P. Jacob, III and H. C. Brown, *J. Amer. Chem. Soc.*, 98, 7832 (1976); (c) J. A. Sinclair and H. C. Brown, *J. Org. Chem.*, 41, 1078 (1976); (d) J. A. Sinclair, G. A. Molander and H. C. Brown, *J. Amer. Chem. Soc.*, 99, 954 (1977). - (6) (a) R. Pappo and P. W. Collins ,Tetrahedron Lett., 28, 2626 (1972); (b) R. T. Hansen, D. B. Carr and J. Schwartz, J. Amer. Chem. Soc., 100, 2244 (1978). - (7) 1-Dodecen-3-one was prepared from decylaldehyde (1980). in two steps (61%);(1) vinylmagnesium bromide addition (2) pyridinium chlorochromate oxidation; J. H. Babler, B. J. Invergo and S. J. Sarussi, J. Org. Chem., 45, 4241 (8) (Z)-7-Eicosen-11-one prepared by this method was proved biologically active by its field tests in South Korea. 131 ## PMO Theory of π^* - π^* Interaction - . #### Ikchoon Lee* and Kiyull Yang Department of Chemistry, Inha University, Incheon 160, Korea (Received February 11, 1984) Recently chemical as well as physical concequences of $\pi^*-\pi^*$ orbital interaction have been demonstrated¹. Direct experimental examination of such orbital interaction has been practicable using electron transmission spectroscopy (ETS)1b, 2. Two important, yet unaccounted-for, features of the experimental results on $\pi^*-\pi^*$ orbital interactions through 2 and 4 C-C σ bonds (N=2 and 4) of the connecting σ frawework² were: (i) level splitting (ΔE) of the symmetry adapted orbitals (SAO), π_+^* and π_-^* , is considerably greater than that for the corresponding π - π interactions, and (ii) the average level (ε_{av}) of the two SAO is above the basis level (ε_0) , the π^* level for monoene. In this work we will show that these features are the results of enhanced effect of through-space interaction (TSI) in the $\pi^*-\pi^*$ interaction compared with that in the $\pi^-\pi$ interaction. To second-order in overlap S, the levels ε_+ and ε_- of the SAO, π_+ and π_- , (or n_+ and n_-) had the expressions (1a) and (1b) for N = odd and even systems respectively³. $$\left.\begin{array}{l}\varepsilon_{+} \cong e' - \delta e_{l} + 2y(1 + \alpha + \beta)\\ \varepsilon_{+} \cong e' + \delta e_{l} - 2x(1 + \alpha - \beta)\end{array}\right\} \tag{1a}$$ $$\begin{array}{l} \varepsilon_{-} \cong e' + \delta e_{h} - 2x(1 + \alpha - \beta) \\ \varepsilon_{+} \cong e' - \delta e_{l} - 2x(1 + \alpha - \beta) \\ \varepsilon_{-} \cong e' + \delta e_{h} + 2y(1 + \alpha + \beta) \end{array}$$ (1a) where e', which is negative, is the environment adjusted level of the basis level, δe_l and δe_h are depression and elevation of e' due to TSI, and x, y, α and β are positive quantities difined as: $$x = \frac{\langle \pi | H' | \Psi_{\text{L0}} \rangle^2}{\Delta e}, \quad y = \frac{\langle \pi | H' | \Psi_{\text{H0}} \rangle^2}{\Delta e},$$ $$\alpha = \left| \frac{e''}{\Delta e} \right|^2 + \left| \frac{e''}{\Delta e} \right|^4 + \cdots, \text{ and}$$ $$\beta = \left| \frac{e''}{\Delta e} \right| + \left| \frac{e''}{\Delta e} \right|^3 + \cdots^{3,4}.$$ Equations (1a) and (1b) clearly indicate that the effects of second-order perturbation (through-bond interaction (TBI)) is to elevate one of the SAO (π_+ and π_- for N=odd and even cases respectively) substantially but to depress the other by a small amount. These are natural consequences of narrow (wide) energy gaps involved in the interactions of π_{\pm} with the framework HO- σ (LU- σ^*) orbitals. The depression effect on a SAO has been shown to be small but by no means negligible⁵, as expected from eq(1), since $(\beta-\alpha)$ <1.0³. In $\pi^*-\pi^*$ orbital interactions, the environment adjusted level of the basis orbital, e*, should be approximately equal to the π^* level of ethylene since there will be no first-order (electrostatic) interaction between an empty π^* orbital and a neutral molecule. The basis level is therefore given as $$\varepsilon_0 \cong e^* - x(1 + \alpha + \beta) + y(1 + \alpha - \beta) \tag{2}$$ where $e^* \cong e_x$. (ethylene)>0 and x, y, α and β are positive quantities similarly defined as above. It is evident from eq (2) that the basis level is somewhat depressed relative to the ethylenic π^* level since the second-order effect is to depress (by an amount $x(1+\alpha+\beta)$) more than to elevate (by an amount $y(1+\alpha-\beta)$) the level e^* . This is in accord with the experimental results2 (see Table). The environment adjusted levels e_+ and e_- for the SAO, π_{+}^{*} and π_{-}^{*} , are obtained using the usual approximation, H_{mn} $\cong -kS_{\rm mn}^3$, where k is a positive constant. $$\begin{array}{l} e_{+} \cong e^{*} + \langle \pi_{+}^{*} | H' | \pi_{+}^{*} \rangle \cong e^{*} - \delta e_{l} \\ e_{-} \cong e^{*} + \langle \pi_{-}^{*} | H' | \pi_{-}^{*} \rangle \cong e^{*} + \delta e_{h} \end{array} (3)$$ where $\delta e_l \cong kS(1-S)$ and $\delta e_h \cong kS(1+S)$. The level splitting, ΔE_S , and energy destabilization, $\delta \varepsilon_S$, as a result of TSI are thus given as, $$\Delta E_S = e_- - e_+ = \delta e_l + \delta e_h \cong 2kS \tag{4}$$ $$\delta \varepsilon_{S} = \delta e_{h} - \delta e_{l} \cong 2kS^{2} \tag{5}$$ The corresponding ones for π - π TSI are³: $\Delta E_S(\pi) \cong 2S$ $(k+e_1)$ and $\delta \varepsilon_S \cong 2(k+e_1)S^2$ where e_1 is the first-order level depression of π orbital, $e_1 < 0$. Hence $\Delta E_S(\pi^*)$ and $\delta \varepsilon_S(\pi^*)$ should be larger (positive quantities) than $\Delta E_S(\pi)$ and $\delta \varepsilon_S(\pi)$ respectively. Inclusion of second-order (TBI) terms gives the final expressions (6a) and (6b) for N = odd and even cases respectively. $$\left. \begin{array}{l} \varepsilon_{+} \cong e^{*} - \delta e_{l} + 2y(1 + \alpha - \beta)) \\ \varepsilon_{-} \cong e^{*} + \delta e_{h} - 2x(1 + \alpha + \beta)) \end{array} \right\}$$ (6a) $$\begin{array}{l} \varepsilon_{+} \cong e^{*} - \delta e_{l} - 2x(1 + \alpha + \beta)) \\ \varepsilon_{+} \cong e^{*} + \delta e_{h} + 2y(1 + \alpha - \beta)) \end{array}$$ (6b) Thus in $\pi^*-\pi^*$ TBI, one of the SAO (π^* and π^* for N