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and ¥C NMR of 5: similar signal pattern was appeared.
Regarding 7, results matched the previously published
data well.
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Since Pohl and Jovin reported that poly(dG-dC)- poly(dG-
dC) showed quite a different CD spectrum from that of a
regular B-DNA structure at high NaCl concentration,'? lots
of studies have been carried out in order to investigate the
effects of the base sequences and the buffer conditions on
the transition between B- and Z-DNA2~® The GpC or CpG
rich region appears frequently in the genomic DNA and the
structural flexibility of this region is regarded to play an
important role in gene expression.®!

In this study, we have prepared a self-complementary, syn-
thetic oligonucleotide d(GCGCGCGC) containing the GpC se-
quences associated with the B-Z transition and have studied
the dynamics of the d(GCGCGCGC), double helix and its
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Figure 1. structure of the duplex d(GCGCGCGC), (A) and bere-

nil(B).
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complex with an antitrypanosomal drug berenil by using
NMR spectroscopy (Figure 1). In addition, the effect of bere-
nil-binding to d(GCGCGCGC); on the base-pair opening has
been also revealed from the resuits. The linewidths of the
resonance signals of the imino protons depend on the open-
. ing rate of the base-pairing and the exchange rate of the
protons between the DNA duplex and water molecules, in
addition to the spin-spin relaxation. Base-pair opening has
been regarded to be very important in replication and trans-
cription. For the initiation of these biological processes the
specific part of a DNA double helix has to be separated.
Since the physiological temperature is lower than the DNA
melting temperature, the kinetics of the base-pair opening
has to be investigated for the better understanding of sepa-
ration of the DNA double helix. Imino proton exchange bet-
ween the base-pairs of DNA and water molecules can be
described by the scheme given below."

k
= op
>N"‘H ......... N\ «—— _NH + N
kel
kx

+<——" T"NH + HOH

T NH + HOH

Scheme

Here k, is the rate constant for the base(or acid)-catalyzed
exchange of the imino proton with solvent water. According
to many experimental results, k, is much larger than kg for
the internal base-pairs.? Therefore every time an internal
base-pair opens, an imino proton exchanges with a water
proton. This is the opening-limited process. In contrast, the
terminal base-pairs open and close faster than the exchange
rate. Therefore, this is the exchange-limited process.

The oligodeoxynucleotidle d(GCGCGCGC) was chemically
synthesized by an ABI 391 DNA synthesizer using B-cyanoe-
thylphosphoramidite method in solid phase. The synthesized
sample was dialyzed with a dialysis tubing of molecular wei-
ght cut-off of 1000 and then was lyophilized. The lyophilized
oligonucleotide was dissolved into 0.5 mL of 20 mM phos-
phate buffer (pH 7.0) containing 100 mM of NaCl and was
transferred into an NMR tube. Berenil (4,4'-diamidinoben-
zene diaceturate) which contains positively charged amidino
groups at both termini was chosen as a ligand for binding
interaction with a duplex d(GCGCGCGC), (Figure 1). Even
though berenil is known to prefer the 5'-AATT site for bin-
ding, the binding data of berenil to d(GCGCGCGC), would
be very useful in understanding the dynamics and the B-
Z transition of DNA. All the NMR spectra of the exchangea-
ble and the nonexchangeable protons of the oligonucleotide
and its berenil complex were obtained on a Bruker DMX600
NMR spectrometer operating at 600 MHz for 'H nucleus.
The Jump-and-Return pulse sequence was used for effective
suppression of the solvent water signal.”® For observing the
temperature-dependence of the chemical shifts and the line-
widths of the imino protons, 'H NMR experiments were per-
formed at various temperatures from —6 T to 60 T with
an accuracy of £0.1 C.

Figure 2 shows the 'H NMR spectra of the imino protons
of the duplex d(GCGCGCGC), and its complex with berenil
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Figure 2. Imino resonance signals of d(GCGCGCGC), (A) and
its berenil complex(B) at various temperature.
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Figure 3. CD spectra of d(GCGCGCGO): (--) and its berenil
:omplex (—) in 20 mM of phosphate buffer containing 100 mM
of NaCl (pH 7.0).
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at various temperatures. The imino proton signals have been
assigned based on the temperature-dependence of line broa-
dening and the NMR data of DNA duplexes with similar
sequences which were reported previously." First of all, two-
fold symmetry of the d(GCGCGCGC), duplex was conserved
even after berenil binding. This indicated that base-pair ope-
ning and berenil binding did not perturb the two-fold sym-
metry of the conformation of the oligonucleotide duplex. This
was also supported by CD spectroscopic data of the duplex
which show no change after binding with berenil (Figure
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Figure 4. Changes in linewidth of the imino proton signals of
d(GCGCGCGC), (A) and its berenil complex(B) with increase
in temperature.

3). But berenil binding caused a considerable effect on dyna-
mics of the duplex (Figure 2, 4). The increase in linewidth
would be caused by spin-spin relaxation as well as by the
exchange of protons between the oligonucleotide bases and
environment such as neighboring water molecules, buffer
molecules or the proton acceptors at DNA bases, etc. If the
proton exchange reaction is assumed to be the two-site first
order exchange, then the linewidth is given by an equation
(1).15~18

I W
Here, Ay, is the linewidth of an imino proton signal, T;
is the spin-spin relaxation time, and t is the life time of
base-pairing. Since the contribution of 1/T, to the linewidth
can be assumed to be very small compared to t~! at 40
T or above, the linewidth is governed by the life time of
the base-pair at higher temperature than 40 . In order
to obtain the pure contribution of exchanging processes of
the protons between DNA and water to the linewidth, the
minimum value of the linewidths over the entire temperature
range was subtracted from the linewidths at higher than
40 C for each proton. This is because the contribution of
1/T, to the linewidth is considered to be not only very large
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Table 1. Base-pair life times determined from the linewidths
of the resonance signals of the imino protons

Temp., €T d(GCGCGCGC), d(GCGCGCGC)-Berenil

G2NH 43 15 ms unavailable
57 6 ms 5 ms

G3NH 43 40 ms unavailable
57 29 ms 9 ms

G4NH 43 45 mg unavailable
57 32 ms 14 ms

Table 2. Thermodynamic property for double helix formation
of d(GCGCGCGC), and its berenil complex in 20 mM phosphate
buffer containing 100 mM of NaCl (pH 7.0)

T, AH® AS° AG®
(€) (kcal/mol) (eu) (kcal/mol)

dGCGCGCGL), 60.8 —62 —162 —13
d(GCGCGCGC),-Berenil 61.1 —68 —180 —~14

Fraction of single straonds

T

30 40 50 60 70 80 90
Temperature(T)

Figure 5. Melting curves of d(GCGCGCGC). (O) and its berenil
complex (a) in 20 mM of phosphate buffer containing 100 mM
of NaCl (pH 7.0).

compared to that of T~ at this temperature, but also nearly
temperature-independent at higher temperatures.”® The life
times of the imino protons of G-C pairs at 2, 3 and 4 posi-
tions of the d(GCGCGCGC), double helix were determined
to be 6, 29 and 32 ms at 55 T, respectively. But those of
the complex with berenil were about 5, 9, and 14 ms, respec-
tively (Table 1). Among them, the internal imino protons
at 3 and 4 positions showed a large decrease in the life
time of base-pairing upon binding with berenil. But it is still
unclear whether the decrease in base-pair life time is caused
by acid catalysis by berenil in the exchange reaction or by
the delicate perturbation in DNA conformation due to comp-
lexation with berenil.

According to Figure 2, binding of berenil to the d(GCGCG-
CGC), double helix at 100 mM of NaCl did not cause any
change in the thermal stability of the double helical structure
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of the d(GCGCGCGC);. Thermodynamic data obtained from
UV melting transition of d(GCGCGCGC), double helix and
its complex with berenil also supported this result (Table
2, Figure 5). Basically, berenil is known to bind strongly
to the 5'-AATT site in the minor-groove vig two hydrogen
bonds: one between amidino proton and thymine carbonyl
oxygen, and the other between amidino proton at the other
site and adenine N3 Very recently, Pilch et al reported
that berenil could bind poly[d(G-C)], vig intercalation as well
as complexation in the minor-groove,? but our NMR data
did not show any evidence for intercalation. More detailed
studies about the effect of berenil binding on the base-pair
life time of the d(GCGCGCGC), double helix is under prog-
ress by using 2-Dimensional NMR spectroscopy.
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[3,3]sigmatropic shift, especially Claisen rearrangement,
has been utilized for introduction of allyl group on benzene
ring (Scheme 1).! This reaction has been known to proceed
as stereoselective concerted mechanism wvig chair cyclohe-
xane transition state.? Buchi has taken advantage of this [3,
3]sigmatropic shift to gain entry into substituted cyclohexene
system.®* We now wish to introduce [3,3]sigmatropic rearra-
ngement of dihydropyran derivatives to other structures,
otherwise which are not readily available.

Dihydropyran 1, was prepared from methyl vinyl ketone,*
was converted to the imine 2 by mixing a slight excess of
propylamine over molecular sieves in ether solution (Scheme
2). The propyl imine 2 could bé purified by distillation, but
because of rapid deterioration it had to be used within a
few days after purification. Heating the imine at 250 T re-
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