Stereospecific Synthesis of the (2R,3S)- and (2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic Acids from D-Glucono- δ -lactone

Jin Hwan Lee, Jin Hyo Kim, Byong Won Lee, Woo Duck Seo, Min Suk Yang, and Ki Hun Park*

Division of Applied Life Science (BK21 Program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Korea. *E-mail: khpark@gsnu.ac.kr
Received May 6, 2006

The enantiomerically pure (2R,3S)- and (2R,3R)-3-amino-2-hydroxy-4-phenylbutanoic acids (AHPBA) 1 and 3 are readily obtained from D-glucono- δ -lactone. Both AHPBAs are the structural key units of KMI derivatives which are the potent inhibitors of BACE 1 (β -secretase) and HIV protease. Additionally, the obtained AHPBAs 1 and 3 are converted to dipeptides of bestatin stereoisomers 2 and 4.

Key Words : α -Hydroxy- β -amino acid, (2R,3S)-AHPBA, BACE 1, Bestatin stereoisomer, D-Glucono- δ -lactone.

Introduction

 α -Hydroxy- β -amino acids are key components of numerous organic substances. These important compounds have been shown to act as substrates for the synthesis of peptide isosteres¹ and are constituents of several natural products that exhibit potent biological activity such as bestatin, dideoxykanamycin A, microginin, and paclitaxel.² The synthesis of α -hydroxy- β -amino acids has therefore attracted a considerable amount of interest in recent years and several approaches have been developed to effect their synthesis.³ A particularly important set of α -hydroxy- β -amino acids, the diastereomers of 3-amino-2-hydroxy-4-phenybutanoic acid (AHPBA), are very attractive because of their biological and medicinal roles, ^{2a,4} and because they are chiral synthons for many bioactive compounds.^{2a,5} (2R,3S)-AHPBA, phenylnorstatine (Pns) 1, is an important component of BACE1 (β secretase) inhibitor such a KMI-008 and KMI-370 (Figure 1). In addition, it is the key component of KMI-062, which is an octapeptide containing a hydroxymethyl carbonyl (HMC) isostere as a transition-state analogue (Figure 1). A wide range of synthetic routes to AHPBA have been attempted using chiral glyoxylate methodology,2b cyanohydrin chemistry of α -aminoaldehydes, ^{3b,8} epoxide opening by azide ion, and hydroxamination of a substituted alkene, 1 respectively. Unfortunately, these protocols were unable to control the absolute configuration within C-2 and C-3,

leading to low overall yields. In our previous paper, we described the stereoselective synthesis of (2S,3R)-, (2S,3S)-AHPBA, and (-)-bestatin from sugar. In this paper, to further demonstrate of the versatility of the above synthetic strategy, we describe the synthesis of (2R,3S)- and (2R,3R)-AHPBAs 1 and 3 *via* synthetic techniques from enantiopure D-glucono- \mathcal{S} -lactone. The enantiomerically pure AHPBAs 1 and 3, thus obtained were easily used to effect simple the syntheses of (-)-bestatin stereoisomers 2 and 4 (Figure 2).

Results and Discussion

The absolute configuration within C2 and C3 in the target molecules 1 and 3 were transferred from those of C2 and C3 in D-glucono- δ -lactone, the starting material. The absolute stereochemistry within C2 of the target molecule was controlled through the stereodivergent formation of an oxirane ring. The formation of the benzyl unit in the target molecules 1 and 3 were carried out *via* nucleophilic addition of phenylmagnesium bromide to the oxirane ring.

(2R,3S)-AHPBA 1 and N-[(2R,3S)-3-amino-2-hydroxy-4-phenylbutanoyl]-L-leucine 2. The synthesis commenced from glucitol 5 which was easily accessed *via* reduction of D-glucono- δ -lactone with NaBH₄ reported in the previous manuscript. To effect the stereodivergent synthesis of (2R,3S)-AHPBA 1 and (2R,3R)-AHPBA 3 from the glucitol 5, the most important transformation was the inversion of

Figure 1. Structures of KMI-008 and KMI-062.

Figure 2. Retrosynthesis of Target Molecules 1-4.

the configuration of C3 in AHPBA numbering. This was started from the selective silvlation of the primary hydroxyl group in diols 5. Treatment of TBDMSCl to the diol 5 in CH₂Cl₂ gave the secondary alcohol 6 in 94% yield. Subsequent mesylation of the hydroxyl group gave 7, which when reacted with Bu₄NF at room temperature enacted desilyation/intramolecular mesylate displacement to give the epoxide 8 in 88% yield. The epoxide 8 was then reacted with PhMgBr in the presence of CuI at -40 °C to give the alcohol 9 regioselectively in 94% yield. The N-Pf protected amine 10 was prepared in 63% yield from the secondary alcohol 9 according to our recently published methodology, 11 involving the use of a pre-cooled solution of Tf₂O in CH₂Cl₂ at -10 °C, which suppressed epimerization during the reaction. The 9-phenyl-9-fluorenyl (Pf) group was chosen to protect the amino group as it is to be not only stable under basic conditions but also stable to organometallic reagents (Scheme 1).¹² The terminal isopropylidene group was selectively cleaved by treating diisopropylidene 10 with Dowex 50-X8 resin to give the diol 11 in 92% yield. 13 The diol 11 was then treated with NaIO₄ in EtOH-H₂O (2:1) at room temperature, and the resulting aldehyde was reduced with NaBH₄, leading to the formation of the alcohol 12 in 90% overall yield. After mesylation of the alcohol 12 with MsCl in THF, the resulting mesylate 13 was treated with LiI at 80 °C to give the iodide 14 in 92% yield. Treatment of the iodide 14 with n-BuLi in THF at -40 °C generated (3S,4S) chiral aminoalcohol 15 {[α]_D²⁰ -4.9° (c 1.35, CHCl₃)} in 90% yield through simultaneous dealkoxyhalogenation (Scheme $1).^{13}$

The secondary hydroxyl group of the aminoalcohol 15 was easily protected with BnBr in THF to give the benzylate 16 in 91% yield. Ozonolysis of the olefin within benzylate 16 and subsequent H₂O₂-mediated oxidation afforded

protected (2R,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid 17. To remove the Pf and Bn protecting groups, protected (2R,3S)-AHPBA 17 was treated with H₂ and 10% Pd/C in MeOH at 70 °C and subsequently purified by ionexchange chromatography through Dowex 50W-X8 resin. To the free base 1 was added conc. HCl and co-evaporated with toluene to give (2R,3S)-AHPBA 1 as its hydrochloride salt. This methodology has been applied to the synthesis of (-)-bestatin stereoisomer 2 which requires the coupling of two structural units, N-terminal α -hydroxy- β -amino acid [(2R,3S)-AHPBA 1] and C-terminal amino acid leucine. The coupling reaction of 17 with (S)-leucine methyl ester was carried out in the presence of DCC to afford the dipeptide product 18 in 89% yield. Treatment of 18 with LiOH followed by exposure to H₂ over Pd/C gave (2R,3S)-bestatin stereoisomer 2 in 89% yield (Scheme 2).

(2R,3R)-AHPBA 3 and N-[(2R,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]-L-leucine 4. The effect the synthesis of (2R,3R)-AHPBA 3, conversion of diol 5 to the corresponding epoxide 21 with retention of C2 stereochemistry was required. Thus, the diol 5 was treated with MsCl in CH_2Cl_2 at -40 °C to give the primary mesylate **20**. The treatment of the monomesylate 20 with K₂CO₃ in methanol afforded the epoxide 21 in quantitative yield (Scheme 3). Oxirane 21 was then subjected to the same reaction conditions to those already described above (compound $8 \rightarrow$ compound 15) to afford (3R,4R)-aminoalcohol 22 { $[\alpha]_D^{20}$ -8.2° (c 2.00, CHCl₃)}. After O-benzylation of the chiral aminoalcohol 22, the resulting benzylate was subjected to ozonolysis followed by hydrogenolysis employing the same protocol to that used to convert the compound 1 to (2R,3R)-AHPBA 3. After protection of the secondary alcohol 22 with BnBr, vinyl group in the protected alcohol was converted to phenylbutanoic acid by ozonolysis. The

Scheme 1. Reagents and conditions; (i) ref. 11, 14 ii) a) TBDMSCl, imidazole, CH_2Cl_2 , rt, 94%, c) MsCl, Et_3N , THF, 0 °C, 94%; (iii) Bu_4NF , THF, rt, 88%; (iv) PhMgBr, CuI, THF, -40 °C, 94%; (v) a) Tf_2O , Pyridine, CH_2Cl_2 , -10 °C, 96%, b) NaN_3 , DMF, rt, 96%, c) H_2 , Pd/C, EtOAc, rt, 85%, d) Pf-Br, $Pb(NO_3)_2$, Et_3N , CH_2Cl_2 , rt, 80%; (vi) Dowex 50W-X8, MeOH, rt, 92%; (vii) a) $NaIO_4$, EtOH- H_2O (2 : 1), rt, $NaBH_4$, 0 °C, 90%, b) MsCl, Et_3N , THF, 0 °C, 97%; (viii) Lil, DMF, 80 °C, 92%, (ix) a) n-BuLi, THF, -40 °C, 90%, b) BnBr, 60% NaH, Bu_4NI , THF, 0 °C, 91%.

reaction of the protected AHPBA with leucine methyl ester was carried out *via* coupling reaction. The product dipeptide 23 was subjected to the deprotection sequence already described above (compound $18 \rightarrow$ compound 2) methods to afford (2R,3R)-bestatin stereoisomer (4) (Scheme 3).

To establish the relative configuration within amino alcohols 15 and 22, they were separately converted to the corresponding oxazolidinone 15a and 22a by reaction with carbonydiimidazole after Pd-mediated hydrogenolysis of the *N*-Pf group. The relative stereochemistry within the oxazolidinones 15a and 22a was shown by analysis of the coupling constants: a large coupling constant was shown by

Scheme 2. Reagents and conditions; (i) O₃, MeOH, -78 °C, 30% H₂O₂, rt, 94%; (ii) H₂, 10% Pd/C, MeOH, 70 °C, 85%; (iii) (*S*)-Leu-OCH₃, HOBT, TsOH, DCC, Et₃N, THF, 0 °C, 89%; (iv) LiOH, THF-H₂O (2:1), 0 °C, 89%; (v) H₂, 10% Pd/C, MeOH, 70 °C, 89%.

Scheme 3. Reagents and conditions; (i) MsCl, Et₃N, CH₂Cl₂, -40 °C, 81%; (ii) K₂CO₃, MeOH, rt, 92%; iii) ref. 11; (iv) a) BnBr, 60% NaH, Bu₄NI, THF, 0 °C, b) O₃, MeOH, -78 °C, 30% H₂O₂, rt, c) H₂, 10% Pd/C, MeOH, 70 °C; (v) a) BnBr, 60% NaH, Bu₄NI, THF, 0 °C, b) O₃, MeOH, -78 °C, 30% H₂O₂, rt, c) (*S*)-Leu-OCH₃, HOBT, TsOH, DCC, Et₃N, THF, 0 °C; (vi) a) LiOH, THF-H₂O (2: 1), 0 °C, b) H₂, 10% Pd/C, MeOH, 70 °C.

15a $(J_{3,4} = 11\text{-}13 \text{ Hz})$, consistent with a 3,4-syn relationship whereas **22a** exhibited a smaller coupling constant $(J_{3,4} = 6\text{-}13\text{ Hz})$

Figure 3. Stereochemistry of compounds 15 and 22.

8 Hz), consistent with a 3,4-*anti* arrangement. NOESY experiments were also consistent with this analysis: strong correlation was observed between H₃–H₄ and H₂–H₅ in compound **22a**, whereas weak correlation was observed between H₃–H₄ in compound **15a** (Figure 3).

Conclusions

The amino alcohols 15 and 22, important precursors of α -hydroxy- β -amino acids, have been prepared from D-glucono- δ -lactone *via* simultaneous dealkoxyhalogenation and stereodivergent formation of the oxirane. Chiral synthons 15 and 22 were used to effect the synthesis of enantiomerically pure (2R,3S)- and (2R,3R)-AHPBAs 1 and 3. Furthermore successful coupling of the protected AHPBAs with leucine methyl ester and ensuing deprotection furnished the stereo-isomers of bestatin 2 and 4.

Experimental Section

General. All non-aqueous reaction was carried out under an inert nitrogen atmosphere. THF was distilled from Na/benzophenone; 2,2-dimethoxypropane, DMF, and methylene chloride were distilled from CaH₂. Column chromatography was carried out using 230-400 mesh silica gel. The final solution before evaporation was washed with brine and dried over anhydrous Na₂SO₄. All melting points were measured on a Thomas Scientific Capillary Melting point apparatus and are uncorrected. IR spectra were recorded on a Bruker IFS66 infrared Fourier transform spectrophotometer. ¹H-NMR and ¹³C-NMR experiments were conducted on Bruker AW-500 spectrometer. EIMS data were collected on a JEOLJMS-700 mass spectrometer. Optical rotations were measured on a JASCO DIP-1000 polarimeter and [α]_D-values are given in units of $10^{-1} \log \text{ cm}^2 \text{ g}^{-1}$.

3,4;5,6-Di-O-isopropylidene-D-glucitol (5). This was prepared from D-glucono- \mathcal{S} -lactone through previously reported method. The spectroscopic data of **5** was consistent with that of the reported. 14

3,4;5,6-Di-*O***-isopropylidene-1-***O***-tert-butyldimethylsilyl-D-glucitol (6).** To a solution of the diol **5** (3.00 g, 11.44 mmol) in CH₂Cl₂ (57 mL) were added imidazole (1.56 g,

22.87 mmol) and TBDMSCl (3.45 g, 22.87 mmol) at room temperature. After stirring the mixture for 1 h, saturated aqueous NaHCO₃ (60 mL) was added and the mixture was extracted with CH₂Cl₂ (60 mL × 3). After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (4 : 1)] to give compound **6** (4.05 g, 94%) as an oil, $[\alpha]_D^{20} +1.7^{\circ}$ (c 2.65, CHCl₃); IR (neat): 3517, 3056, 3012 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.00 (s, 6H), 0.83 (s, 9H), 1.25-1.33 (m, 12H), 2.29 (d, J = 7.8 Hz, 1H), 3.58 (dd, J = 10.1, 6.2 Hz, 1H), 3.62 (dd, J = 10.1, 6.3 Hz, 1H), 3.69 (m, 1H), 3.86 (dd, 1H, J = 8.3, 5.0 Hz, 1H), 3.90-3.99 (m, 3H), and 4.05 (dd, J = 8.3, 5.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ -5.0, -5.0, 18.7, 25.7, 26.2, 27.0, 27.3, 27.5, 65.1, 68.2, 70.7, 77.6, 77.7, 80.1, 109.9, and 110.0 (Found; C, 57.41; H, 9.63. C₁₈H₃₆O₆Si requires C, 57.41; H, 9.64%).

3,4;5,6-Di-O-isopropylidene-2-O-methanesulfonyl-1-Otert-butyldimethylsilyl-D-glucitol (7). To a solution of compound **6** (3.50 g, 9.29 mmol) in THF (45 mL) were added triethylamine (2.60 mL, 18.59 mmol) and MsCl (1.44 mL, 18.59 mmol) at 0 °C. The reaction mixture was stirred for 10 min at room temperature, and then was quenched with saturated aqueous NaHCO3 (50 mL). The reaction mixture was extracted with EtOAc (50 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc (40 mL × 3). After concentration of the combined extracts, the resulting residue was chromatographed on silica gel [hexane-EtOAc (6:1)] to give compound 7 (3.98 g, 94%) as an oil; $[\alpha]_D^{20}$ –0.5° (c 3.30, CHCl₃); IR (neat): 3056, 3011, 2968 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.00 (s, 6H), 0.81 (s, 9H), 1.24 (s, 3H), 1.28 (s, 3H), 1.31 (s, 3H), 1.34 (s, 3H), 3.01 (s, 3H), 3.77 (dd, J = 11.1, 5.1 Hz, 1H), 3.82-3.86 (m, 2H), 3.89 (dd, J = 14.9, 7.4 Hz, 1H), 3.99 (m, 1H), 4.05-4.07(m, 2H), and 4.70 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ -5.4, -5.4, 18.4, 25.3, 25.9, 26.3, 26.7, 27.3, 38.9, 63.1, 67.6, 76.8, 77.1, 77.4, 78.4, 81.3, 110.0, and 110.3 (Found; C, 50.19; H, 8.43. C₁₉H₃₈O₈SSi requires C, 50.19; H, 8.42%).

1,2-Anhydro-3,4;5,6-di-*O***-isopropylidene-D-mannitol** (8). To a solution of compound 7 (4.00 g, 8.80 mmol) in THF (44 mL) was added Bu₄NF (3.45 g, 13.20 mmol). After stirring for 3 h at room temperature, the reaction mixture was quenched with H₂O (50 mL) and extracted with EtOAc (50 mL × 3). The combined extracts were evaporated, and then the residue was chromatographed on silica gel [hexane-EtOAc (12:1)] to give compound 8 (1.90 g, 88%) as an oil; $[\alpha]_D^{20}$ +4.2 (*c* 1.15, CHCl₃); IR (neat): 3051, 3016, 2982 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.35-1.42 (m, 12H), 2.82 (m, 2H), 3.20 (m, 1H), 3.83 (m, 1H), 3.95 (dd, J = 10.54, 4.85 Hz, 1H), 4.05 (m, 1H), and 4.11 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 25.2, 26.6, 26.7, 27.1, 44.2, 51.9, 67.4, 76.7, 78.7, 78.9, 109.8, and 110.7 (Found; C, 59.01; H, 8.24. C₁₂H₂₀O₅ requires C, 59.00; H, 8.25%).

1-Deoxy-3,4; 5,6-di-O-isopropylidene-1-phenyl-D-mannitol (9). To a solution of CuI (0.94 g, 4.91 mmol) in THF (30 mL) at -40 °C under N_2 was added dropwise 1.0 M PhMgBr (24.56 mL, 24.56 mmol, 200 mol%) over 15 min. After stirring for 10 min, a solution of epoxide 8 (4.50 g,

18.42 mmol) in THF (50 mL) was added dropwise over a period of 20 min at the same temperature. After additional stirring for 1 h, the reaction mixture was quenched with saturated aqueous NH₄Cl(60 mL). The mixture was extracted with EtOAc (50 mL \times 3), and the combined organic layer was concentrated. The resulting residue was chromatographed on silica gel [hexane-EtOAc (12:1)] to give compound 9 (3.70 g, 94%) as an oil, $[\alpha]_D^{20} + 2.88^{\circ}$ (c 2.00, CHCl₃); IR (neat): 3502, 3027, 2968, 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.2-1.4 (m, 12H), 2.75 (dd, J = 13.9, 8.4 Hz, 1H), 3.09 (dd, J = 13.9, 3.0 Hz, 1H), 3.73-3.79 (m, 2H), 3.88 (m, 2H)1H), 3.99 (m, 1H), 4.06 (m, 1H), 4.17 (dd, J = 8.5, 6.1 Hz, 1H), and 7.20-7.46 (m, 5H); 13 C NMR (125 MHz, CDCl₃) δ 25.2, 26.5, 26.9, 27.0, 39.7, 67.9, 73.1, 76.4, 81.1, 82.8, 109.3, 110.2, 126.2, 128.2, 129.8, and 138.5 (Found; C, 67.04; H, 8.13. C₁₈H₂₆O₅ requires C, 67.06; H, 8.13%).

1,2-Dideoxy-3,4;5,6-di-O-isopropylidene-1-phenyl-2-[(9phenyl-9-fluorenyl)-amino]-D-glucitol (10). To a solution of mannitol 9 (0.70 g, 2.17 mmol) in CH_2Cl_2 (10 mL) at -10°C were added pyridine (0.52 mL, 6.51 mmol) dropwisely over a period of 5 min and an ice-cooled solution of Tf₂O (0.55 mL, 3.26 mmol) in CH₂Cl₂ (5 mL). The reaction mixture was stirred for 10 min at -10 °C, and then was quenched with saturated aqueous NaHCO3 (15 mL). The organic layer was washed with saturated aqueous CuSO₄ (12 mL) and was evaporated to give the triflate (0.96 g, 96%), which was used without further purification. The mixture of the triflate (0.96 g, 2.10 mmol) and NaN₃ (0.41 g, 6.27 mmol) in DMF (10 mL) was stirred for 2 h at room temperature. The reaction mixture was quenched with H₂O (50 mL) and extracted with EtOAc (40 mL \times 3). After evaporation of the organic layer, the remaining residue was chromatographed to give the azido compound (0.70 g, 96%). This compound was directly hydrogenated with 10% Pd/C (0.07 g) in EtOAc (10 mL) to the corresponding free amine (0.55 g, 85%). To the solution of the free amine (0.55 g, 1.71 mmol) in CH₂Cl₂ (12 mL) was added 9-phenyl-9-fluorenyl bromide (Pf-Br) (0.83 g, 2.57 mmol), Pb(NO₃)₂ (0.85 g, 2.57 mmol), and Et₃N (0.47 mL, 3.42 mmol). After stirring for 24 h at room temperature, the mixture was filtrated, poured into excess H₂O, and the organic layer was separated, then the aqueous layer was extracted with CH_2Cl_2 (20 mL × 3). After concentration of the combined extracts, the resulting residue was chromatographed on silica gel [hexane-EtOAc (25 : 1)] to give compound **10** (0.80 g, 80%) as a solid, mp 53-57 °C; $[\alpha]_{\rm D}^{20}$ +84.4° (c 6.00, CHCl₃); IR (KBr): 3309, 3027, 2992, 1602 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.14 (s, 3H), 1.17 (s, 3H), 1.23 (s, 3H), 1.49 (s, 3H), 2.31 (dd, J = 12.6, 5.1 Hz, 1H), 2.43 (dd, J = 12.6, 9.0 Hz, 1H), 2.49 (m, 1H), 3.43 (m, 1H), 3.53 (dd, J = 6.0, 1.3 Hz, 1H), 3.70-3.46 (m, 2H), 4.14 (m, 1H), and 6.66-7.20 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 25.3, 26.1, 26.6, 27.4, 40.4, 54.4, 66.5, 72.3, 76.1, 78.8, 99.3, 108.5, 109.1, 119.8, 120.1, 125.5, 125.6, 125.9, 126.6, 127.0, 127.7, 128.0, 128.0, 128.1, 128.2, 128.3, 129.3, 139.7, 140.4, 145.8, 149.9, and 151.2 (Found; C, 79.11; H, 6.98; N, 2.51. C₃₇H₃₉NO₄ requires C, 79.11; H, 7.00; N, 2.49%).

1,2-Dideoxy-3,4-O-isopropylidene-1-phenyl-2-[(9-phenyl-9-fluorenyl)-amino]-D-glucitol (11). To a solution of the N-protected compound 10 (4.00 g, 7.12 mmol) in 90% MeOH (40 mL) was added Dowex 50W-X8 resin (0.40 g) at room temperature. After stirring for 24 h, the reaction mixture was filtered, and then the filtrate was evaporated. The resulting residue was chromatographed on silica gel [hexane-EtOAc (3 : 1)] to give the diol **11** (3.40 g, 92%) as a solid, mp 72-74 °C; $[\alpha]_D^{20}$ +60.7° (c 1.66, CHCl₃); IR (KBr): 3487, 3347, 3053, 3004, 1600 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.03 (s, 3H), 1.31 (s, 3H), 2.43 (dd, J = 13.6, 10.9 Hz, 1H), 2.69 (dt, J = 10.8, 2.8 Hz, 1H), 3.05 (dd, J = 13.6, 2.5 Hz, 1H), 3.20 (dd, J = 8.7, 3.0 Hz, 1H), 3.55 (m, 1H), 3.78 (m, 1H), 3.85-3.92 (m, 2H), and 5.75-7.71 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 26.3, 26.9, 36.3, 54.7, 64.8, 71.8, 72.8, 76.1, 80.7, 100.7, 107.8, 119.6, 120.4, 124.5, 125.6, 126.3, 126.7, 127.4, 128.1, 128.5, 128.7, 128.9, 129.0, 129.7, 137.8, 140.2, 140.9, 143.4, 147.5, and 148.3 (Found; C, 78.30; H, 6.77; N, 2.69. C₃₄H₃₅NO₄ requires C, 78.28; H, 6.76; N, 2.69%).

1,2-Dideoxy-3,4-O-isopropylidene-1-phenyl-2-[(9-phenyl-9-fluorenyl)-amino |-D-xylitol (12). To a solution of the diol 11 (3.50 g, 6.70 mmol) in EtOH: H₂O (50 mL: 25 mL) was added NaIO₄ (2.15 g, 10.06 mmol) at room temperature. After stirring for 3 h, the mixture was cooled to 0 °C, and then NaBH₄ (0.38 g, 10.06 mmol) was added and stirred for 10 min. After evaporation of EtOH, the mixture was poured into excess of H₂O and extracted with EtOAc (50 mL × 3). After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (8 : 1)] to give compound 12 (2.97 g, 90%) as a solid, mp 57-60 °C; $[\alpha]_{\rm D}^{20}$ +103.6° (c 1.00, CHCl₃); IR (KBr): 3492, 3345, 3061, 3007, 1601 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 1.10 (s, 3H), 1.37 (s, 1H), 2.38 (dd, J = 13.3, 8.9 Hz, 1H), 2.52 (m, 1H), 2.87 (dd, J = 13.3, 5.1 Hz, 1H), 3.16 (dd, J = 8.7, 2.8 Hz, 1H), 3.41 (dd, J = 10.9, 7.5 Hz, 1H), 3.59 (dd, J = 10.9, 4.3 Hz, 1H), 4.10 (m, 1H), and 6.17-7.68 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 26.6, 27.1, 37.6, 54.3, 62.5, 72.8, 75.9, 80.1, 107.7, 119.7, 120.2, 124.9, 125.8, 126.1, 126.4, 127.4, 127.9, 128.2, 128.3, 128.5, 128.7, 128.8, 129.5, 138.2, 140.2, 140.9, 144.0, 148.7, and 148.8 (Found; C, 80.62; H, 6.79; N, 2.85. C₃₃H₃₃NO₃ requires C, 80.62; H, 6.77; N, 2.85%).

1,2-Dideoxy-3,4-*O*-isopropylidene-5-*O*-methanesulfonyl-1-phenyl-2-[(9-phenyl-9-fluorenyl)-amino]-D-xylitol (13). To a solution of alcohol 12 (2.00 g, 4.07 mmol) in THF (20 mL) were added triethylamine (1.13 mL, 8.23 mmol) and methanesulfonyl chloride (0.63 mL, 8.23 mmol) at 0 °C. The reaction mixture was stirred for 10 min at room temperature, and then was quenched with saturated aqueous NaHCO₃ (40 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc (40 mL × 3). After concentration of the combined extracts, the resulting residue was chromatographed on silica gel [hexane-EtOAc (12 : 1)] to give compound 13 (2.25 g, 97%) as a solid, mp 50-51 °C; $[\alpha]_D^{20}$ +115.7° (*c* 1.40, CHCl₃); IR (KBr): 3345, 3065, 3021, 2985, 1605 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.30 (s,

3H), 1.56 (s, 3H), 2.26-2.30 (m, 2H), 2.45 (m, 1H), 2.76 (s, 3H), 3.36 (d, J = 8.5 Hz, 1H), 3.70 (dd, J = 11.1, 6.2 Hz, 1H), 3.86 (dd, J = 11.1, 2.9 Hz, 1H), 4.52 (m, 1H), and 6.56-7.77 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 26.7, 27.4, 37.3, 40.2, 53.6, 69.0, 72.4, 74.2, 76.9, 109.1, 120.0, 120.2, 125.4, 125.7, 126.0, 126.1, 127.3, 128.1, 128.2, 128.4, 128.4, 128.5, 128.7, 129.0, 138.9, 140.2, 140.8, 145.0, 148.9, and 151.1 (Found; C, 71.68; H, 6.20; N, 2.44. $C_{34}H_{35}NO_{5}S$ requires C, 71.68; H, 6.19; N, 2.46%).

1,2,5-Trideoxy-3,4-O-isopropylidene-5-iodo-1-phenyl-2-[(9-phenyl-9-fluorenyl)-amino]-D-xylitol (14). To a solution of the mesylate 13 (1.50 g, 2.63 mmol) in DMF (15 mL) was added LiI (1.06 g, 7.90 mmol). After stirring of the mixture for 12 h at 80 °C, saturated aqueous NaHCO₃ (40 mL) was added and the mixture was extracted with EtOAc $(30 \text{ mL} \times 3)$. The extract was evaporated and the remaining residue was chromatographed on silica gel [hexane-EtOAc (20 : 1)] to give compound **14** (1.45 g, 92%) as a solid, mp 45-47 °C; $[\alpha]_D^{20}$ +115.1° (*c* 1.60, CHCl₃); IR (KBr): 3329, 3071, 3018, 2967, 1601 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 3H), 1.58 (s, 3H), 2.16-2.24 (m, 3H), 2.63 (dd, J =10.5, 6.8 Hz, 1H), 2.72 (dd, J = 10.5, 4.2 Hz, 1H), 3.26 (d, J = 10.5, 4.2 Hz, 1H), 4.2 Hz, 4.2 H = 7.9 Hz, 1H), 4.25 (m, 1H), and 6.55-7.79 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 5.8, 27.2, 27.6, 30.9, 40.7, 53.6, 72.4, 75.8, 77.6, 80.7, 108.4, 120.0, 120.1, 125.6, 125.7, 125.8, 126.1, 127.2, 128.1, 128.1, 128.2, 128.4, 128.5, 128.6, 129.1, 138.9, 140.2, 140.8, 145.2, 149.1, and 151.4 (Found; C, 65.90; H, 5.36; N, 2.35. C₃₃H₃₂ INO₂ requires C, 65.89; H, 5.36; N, 2.33%).

(3S,4S)-5-Phenyl-4-[(9-phenyl-9-fluorenyl)-amino]-penten-3-ol (15). A solution of the iodinate 14 (1.20 g, 1.99) mmol) in THF (12 mL) was cooled to -40 °C and 2.5 M n-BuLi (1.60 mL, 3.99 mmol, 200 mol%) was added dropwise over 10 min using a syring pump. The reaction mixture was stirred for an additional 15 min at -40 °C, then quenched with saturated aqueous NH₄Cl (20 mL). The mixture was extracted with EtOAc (20 mL × 3) and combined extracts were concentrated. The resulting residue was chromatographed on silica gel [hexane-EtOAc (8:1)] to give compound **15** (0.75 g, 90%) as a solid, mp 48-52 °C; $[\alpha]_D^{20}$ -4.9° (c 1.35, CHCl₃); IR (KBr): 3458, 3330, 3062, 3023, 2982, 2931, 1602 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 2.28 (m, 2H), 2.39 (m, 1H), 2.55 (m, 1H), 3.69 (br, 1H), 5.07 (m, 2H), 5.54 (m, 1H), and 6.71-7.70 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 39.8, 59.7, 73.1, 73.7, 116.2, 120.9, 120.9, 126.5, 127.0, 127.0, 127.3, 128.2, 128.7, 128.9, 129.3, 129.3, 129.4, 129.5, 130.5, 140.1, 140.6, 141.4, 141.6, 146.3, 150.1, and 151.0 (Found; C, 86.30; H, 6.53; N, 3.34. C₃₀H₂₇ NO requires C, 86.30; H, 6.52; N, 3.35%).

(3*S*,4*S*)-3-*O*-Benzyl-5-phenyl-4-[(9-phenyl-9-fluorenyl)-amino]-penten-3-ol (16). Allylic alcohol 15 (1.00 g, 2.39 mmol) was dissolved in THF (15 mL) and treated with 60% NaH (0.19 g, 4.79 mmol) and Bu₄NI (0.27 g, 0.72 mmol) at 0 °C. After stirring for 10 min at the same temperature, BnBr (0.57 mL, 4.79 mmol) was added. The reaction mixture was stirred for 24 h at room temperature, and then quenched with saturated aqueous NH₄Cl (40 mL). The mixture was

extracted with EtOAc (40 mL × 3). After concentration of the combined extracts, the residue was purified by silica gel column chromatography [hexane-EtOAc (15:1)] to give the compound **16** (1.10 g, 91%) as an oil, $[\alpha]_D^{20}$ +20.0° (c 3.00, CHCl₃); IR (neat) 3328, 3063, 3022, 2926, 2866, 1602 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.17 (dd, J = 13.4, 7.7 Hz, 1H), 2.53 (m, 1H), 2.74 (dd, J = 13.4, 6.0 Hz, 1H), 3.29 (m, 1H), 3.95 (d, J = 12.2 Hz, 1H), 4.24 (d, J = 12.2 Hz, 1H), 5.12 (m, 1H), 5.22 (m, 1H), 5.98 (ddd, J = 17.2, 10.6, 6.4Hz, 1H), and 6.53-7.62 (m, 23H); 13C NMR (125 MHz, CDCl₃) δ 38.0, 58.4, 70.4, 72.7, 80.7, 117.3, 119.5, 119.8, 125.3, 125.6, 126.2, 126.2, 126.9, 127.2, 127.4, 127.4, 127.8, 127.9, 128.1, 128.1, 128.2, 129.5, 136.2, 138.9, 140.1, 140.1, 140.4, 145.8, 150.0, and 150.0 (Found; C, 87.56; H, 6.57; N, 2.76. C₃₇H₃₃ NO requires C, 87.54; H, 6.55; N, 2.76%).

(2R,3S)-2-O-Benzyl-4-phenyl-3-[(9-phenyl-9-fluorenyl)amino]-phenylbutanoic acid (17). A solution of the benzylate **16** (1.00 g, 1.97 mmol) in CH₃OH (20 mL) was reacted with ozone at -78 °C until the solution turned blue, then the residual ozone was removed with N₂ gas. The reaction mixture was allowed to reach room temperature and then was added 30% H₂O₂ (20 mL) and stirred overnight. After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (3:1)] to give compound **17** (0.97 g, 94%) as a solid; mp 80-82 °C; $[\alpha]_{\rm D}^{20}$ +74.8° (c 2.00, CHCl₃); IR (KBr) 3334, 3288, 3063, 3020, 2928, 1742, 1602 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.20 (dd, J = 13.5, 10.6 Hz, 1H), 2.65 (m, 1H), 3.05 (d, J =12.1 Hz, 1H), 3.18 (d, J = 3.8 Hz, 1H), 4.02 (d, J = 12.2 Hz, 1H), 4.61 (d, J = 12.2 Hz, 1H), 5.94 (d, J = 5.4 Hz, 1H), and 6.77-7.64 (m, 23H); 13 C NMR (125 MHz, CDCl₃) δ 36.0, 56.1, 72.2, 73.0, 77.3, 119.8, 120.5, 124.5, 125.4, 125.5, 127.0, 127.5, 127.7, 127.8, 128.3, 128.4, 128.5, 128.7, 128.8, 129.0, 129.4, 129.6, 136.7, 137.6, 139.7, 140.6, 146.8, 147.0, and 171.9 (Found; C, 82.25; H, 5.94; N, 2.66. C₃₆H₃₁ NO₃ requires C, 82.26; H, 5.94; N, 2.66%).

(2R,3S)-3-Amino-2-hydroxy-4-phenylbutanoic acid hydrochloride (1·HCl). Protected AHPBA 17 (0.30 g, 0.57 mmol) was reacted with H₂ and 10% Pd/C (0.03 g) in CH₃OH (8 mL) at 70 °C for 12 h. After filtration of the catalyst with Celite, Dowex 50W-X8 was added to the filtrate. The mixture was filtered, and then washed with MeOH. The remaining residue was eluted with 3 N NH₄OH and the ammoniacal solution was evaporated. To the free base 1 was added conc. HCl. The mixture was evaporated, and then co-evaporated with toluene, to give compound 1 as its hydrochloride salt. mp 219-220 °C; $[\alpha]_D^{20}$ -25.3° (c 0.70, 1 N HCl); IR (KBr) 3434, 3048, 2939, 1608 cm⁻¹; ¹H NMR $(500 \text{ MHz}, D_2\text{O}) \delta 2.97 \text{ (dd}, J = 14.0, 8.0 \text{ Hz}, 1\text{H}), 3.12 \text{ (dd},$ J = 14.0, 7.0 Hz, 1H), 3.89 (ddd, J = 15.0, 7.5, 3.0 Hz, 1H), 4.26 (d, J = 3.0 Hz, 1H), and 7.31-7.41 (m, 5H); $\delta_{\rm C}$ (125 MHz; D_2O) δ 35.5, 54.9, 69.2, 128.0, 129.5, 129.8, 135.3, and 175.0; MS m/z: 134, 120, 104, 91 (M⁺); (Found; C, 51.84; H, 6.08; N, 6.06. C₁₀H₁₄ClNO₃ requires C, 51.84; H, 6.09; N, 6.05%).

Methyl N-[(2R,3S)-2-O-benzyl-4-phenyl-3-{(9-phenyl-

9-fluorenyl)-amino}-butano-yl]-L-leucinate (18). To a solution of compound 17 (0.54 g, 1.03 mmol) in THF (22 mL) were added (S)-Leu-OCH₃ (0.0.38 g, 2.06 mmol), HOBT (0.15 g, 1.13 mmol), TsOH (0.19 g, 1.03 mmol), DCC (0.24 g, 1.15 mmol) and Et₃N (0.22 mL, 1.54 mmol). After stirring the mixture for 2 h at 0 °C, the mixture was quenched with saturated aqueous NaHCO₃ (25 mL) and the mixture was extracted with EtOAc (25 mL × 3). After evaporation of the combined extracts, the remaining residue was chromatographed on silica gel [hexane-EtOAc (10:1)] to give compound **18** (0.60 g, 89%) as a solid. mp 42-44 °C; $[\alpha]_{\rm D}^{20}$ -120.6° (c 2.00, CHCl₃); IR (KBr) 3412, 3324, 3063, 3019, 2957, 2929, 1743, 1667, 1602 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.91 (d, J = 6.3 Hz, 6H), 1.26 (m, 1H), 1.47-1.66 (m, 3H), 2.28 (dd, J = 14.3, 10.5 Hz, 1H), 2.66 (m, 1H), 3.32 (d, J = 7.9 Hz, 1H), 3.44 (d, J = 2.9 Hz, 1H), 3.71 (s, 3H), 3.93 (m, 1H), 4.62 (m, 1H), and 6.23-7.65 (m, 23H); ¹³C NMR (125 MHz, CDCl₃) δ 22.4, 23.2, 25.3, 38.4, 42.0, 50.5, 52.6, 57.5, 72.9, 73.0, 80.4, 119.7, 120.1, 125.9, 126.1, 126.6, 126.7, 127.2, 128.1, 128.1, 128.3, 128.3, 128.4, 128.4, 128.7, 128.8, 130.3, 137.9, 140.1, 140.5, 140.9, 146.0, 150.0, 151.3, 171.8, and 173.3 (Found; C, 79.09; H, 6.81; N, 4.29. C₄₃H₄₄N₂O₄ requires C, 79.11; H, 6.79; N, 4.29%).

N-[(2R,3S)-2-O-Benzyl-4-phenyl-3-{(9-phenyl-9-fluorenyl)-amino}-butano-yl]-L-leucine (19). To a solution of the protected dipeptide 18 (0.44 g, 0.67 mmol) in THF: H₂O (8 mL: 4 mL) was added LiOH (0.03 g, 1.02 mmol) at 0 °C. After stirring for 3 h at room temperature, 3% HCl (8 mL) was added and the mixture was extracted with (CH₃)₂CHOH : CH₂Cl₂ (10 mL : 30 mL). After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (6 : 1)] to give compound 19 (0.38 g, 89%) as a solid. mp 228-230 °C; $[\alpha]_D^{20}$ -96.4° (c 3.00, CHCl₃); IR (KBr) 3416, 3326, 3063, 3018, 2959, 1720, 1662, 1603 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.91 (m, 6H), 1.52-1.58 (m, 2H), 1.70 (ddd, J = 13.0, 7.5, 5.4, .3 Hz), 2.28 (dd, J = 12.9, 8.9 Hz, 1H), 2.62-2.70 (m, 2H), 3.44 (d, J= 3.0 Hz, 1H), 3.94 (m, 2H), 4.56 (m, 1H), and 6.25-7.58 (m, 1H)23H); 13 C NMR (125 MHz, CDCl₃) δ 21.8, 22.8, 24.9, 37.9, 41.0, 50.4, 57.2, 72.5, 72.7, 79.9, 119.3, 119.8, 125.4, 125.7, 126.1, 126.2, 126.9, 127.6, 127.8, 127.9, 127.9, 128.0, 128.0, 128.3, 128.4, 129.8, 137.3, 139.8, 139.8, 140.4, 145.4, 149.6, 150.5, 172.1, and 176.8 (Found; C, 79.00; H, 6.62; N, 4.39. C₄₂H₄₂N₂O₄ requires C, 78.97; H, 6.63; N, 4.39%).

N-[(2*R*,3*S*)-3-Amino-2-hydroxy-4-phenylbutanoyl]-L-leucine (2). The protected leucine 19 (0.30 g, 0.47 mmol) was reacted with H₂ and 10% Pd/C (0.07 g) in CH₃OH (10 mL) at 70 °C for 10 h. The reaction mixture was filtered through Celite, and the remaining solid was subjected to ion-exchange chromatography (Dowex 50W-X8, eluting with 3 N NH₃ in water) to give compound 2 (0.13 g, 89%) as a solid. mp 231-232 °C; $[\alpha]_D^{20}$ –6.6° (*c* 0.85, AcOH); IR (KBr) 3421, 3211, 3063, 2957, 2869, 1667, 1647, 1611 cm⁻¹; ¹H NMR (500 MHz, D₂O) δ 0.86 (d, *J* = 6.4 Hz, 3H), 0.90 (d, *J* = 6.4 Hz, 3H), 1.59-1.75 (m, 3H), 3.00 (dd, *J* = 14.2, 8.1 Hz, 1H), 3.11 (dd, *J* = 14.2, 7.3 Hz, 1H), 3.86 (m, 1H), 4.24 (d, *J* = 3.7 Hz, 1H), 4.41 (dd, *J* = 9.1, 5.5 Hz, 1H), and

7.32-7.43 (m, 5H); 13 C NMR (125 MHz, D₂O) δ 21.0, 22.6, 24.9, 35.5, 39.5, 51.9, 55.5, 69.8, 128.2, 129.7, 129.8, 135.4, 173.5, and 176.8 (Found; C, 62.31; H, 7.84; N, 9.09. C₁₆H₂₄ N₂O₄ requires C, 62.32; H, 7.84; N, 9.08%).

3,4;5,6-Di-O-isopropylidene-1-O-methanesulfonyl-Dglucitol (20). To a solution of glucitol 5 (0.20 g, 0.76 mmol) in CH₂Cl₂ (3.5 mL) was added diluted Et₃N (0.11 mL, 0.76 mmol) in CH_2Cl_2 (1.7 mL) and MsCl (0.06 mL, 0.76 mmol) in CH₂Cl₂ (2 mL) at -40 °C. After stirring for 5 min, the mixture was poured into sat. aq NaHCO₃ solution (8 mL) and extracted with CH₂Cl₂ (15 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (10 mL \times 3). After concentration of the organic layer, the resulting residue was chromatographed on silica gel [hexane-EtOAc (3:1)] to give primary mesylate **20** (0.21 g, 81%) as an oil. [α]_D²⁰ +2.8° (c 2.00, CHCl₃); IR (neat) 3425, 2941, 1640 cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 1.26 (s, 3H), 1.35 (s, 3H), 1.43 (s, 3H), 1.44 (s, 3H), 2.58 (d, J = 9.0Hz, 1H), 3.10 (s, 3H), 3.10-4.01(m, 3H), 4.05-4.09 (m, 2H), 4.15-4.32 (m, 1H), 4.34 (s, 1H), and 4.35 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 25.2, 26.6, 26.8, 37.7, 68.0, 68.2, 71.2, 77.2, 79.5, 110.0, and 110.1. (Found; C, 45.86; H, 7.12. $C_{13}H_{24}O_8S$ requires C, 45.87; H, 7.11%).

1,2-Anhydro-3,4;5,6-di-*O***-isopropylidene-D-glucitol (21).** To a solution of monomesylate **20** (0.50 g, 1.47 mmol) in CH₃OH (8 mL) was added K₂CO₃ (0.50 g, 3.67 mmol). After stirring for 2h at room temperature, the reaction mixture was quenched with excess 5% citric acid (15 mL) and extracted with EtOAc (25 mL × 2). After concentration of the combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (10 : 1)] to give epoxide **21** (0.32 g, 92%) as an oil. $[\alpha]_D^{20}$ –3.1° (c 0.93, CHCl₃); IR (neat): 3029, 2972, 2956 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.34-1.41 (m, 12H), 2.79-2.80 (m, 2H), 3.09 (dd, J = 3.4, 1.4 Hz, 1H), 3.83 (dd, J = 7.5, 4.8 Hz, 1H), 3.88 (m, 1H), 3.98 (dd, J = 8.6, 4.4 Hz, 1H), 4.06 (ddd, J = 8.3, 6.1, 4.4 Hz, 1H), and 4.14 (dd, J = 8.6, 6.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 25.6, 27.0, 27.2, 27.4, 45.1, 52.4, 68.2, 77.5, 78.9, 80.7, 110.1, and 110.6. (Found; C, 59.00; H, 8.26. C₁₂H₂₀O₅ requires C, 59.00; H, 8.25%).

(3*S*,4*R*)-5-Phenyl-4-[(9-phenyl-9-fluorenyl)-amino]-penten-3-ol (22). (3*S*,4*R*) allylic alcohol 22 was obtained by the same procedure as the conversion of **8** to **15**; the overall yield for this conversion was 79%. This compound was obtained as a solid. mp 51-52 °C; $[\alpha]_D^{20}$ -8.2° (*c* 2.00, CHCl₃); IR (KBr): 3517, 3297, 3068, 3022, 2997, 2957, 1604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.37-2.43 (m, 3H), 2.57 (m, 1H), 3.13 (br, 1H), 3.33 (m, 1H), 5.04 (m, 2H), 5.63 (m, 1H), and 6.24-7.67 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 36.0, 59.1, 71.6, 72.3, 115.4, 119.5, 120.0, 125.0, 125.2, 125.7, 126.3, 127.2, 128.0, 128.1, 128.1, 128.4, 128.5, 128.6, 129.5, 137.1, 138.9, 139.7, 140.8, 145.0, 149.0, and 149.5 (Found; C, 86.30; H, 6.53; N, 3.34. C₃₀H₂₇NO requires C, 86.30; H, 6.52; N, 3.35%).

(2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic acid hydrochloride (3·HCl). This compound was prepared according to the 1·HCl compound method and obtained as a

solid; mp 225-228 °C; $[\alpha]_D^{20}$ +4.8° (c 0.70, 1 N HCl); IR (KBr) 3400, 3032, 2909, 2851, 1606 cm⁻¹; ¹H NMR (500 MHz, D₂O) δ 2.90 (dd, J = 15.0, 9.5 Hz, 1H), 2.99 (dd, J = 14.5, 5.5 Hz, 1H), 3.98 (m, 1H), 4.51 (d, J = 3.5 Hz, 1H), and 7.28-7.37 (m, 5H); ¹³C NMR (125 MHz, D₂O) δ 33.2, 55.1, 70.0, 128.0, 129.3, 129.8, 135.2, and 174.3; MS m/z: 134, 120, 104, 91 (M⁺); (Found; C, 51.82; H, 6.09; N, 6.07. $C_{10}H_{14}ClNO_3$ requires C, 51.84; H, 6.09; N, 6.05%).

Methyl N-[(2R,3R)-2-O-benzyl-4-phenyl-3-{(9-phenyl-9-fluorenyl)-amino}-butano-yl]-L-leucinate (23). This compound 23 was prepared according to the same method to obtain 18 to provide a solid; the yield for this conversion was 90%; mp 41-43 °C; $[\alpha]_{\rm D}^{20}$ +47.3° (c 3.00, CHCl₃); IR (KBr) 3412, 3335, 3063, 3017, 2957, 1743, 1674, 1602 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.94 (d, J = 4.7 Hz, 3H), 0.96 (d, J = 4.7 Hz, 3H), 1.51-1.69 (m, 3H), 2.50 (br, 1H), 2.55 (dd, J= 12.5, 6.9 Hz, 1H), 2.84 (m, 2H), 3.43 (dd, J = 1.9 Hz, 1H), 3.73 (s, 3H), 4.10 (d, J = 11.7 Hz, 1H), 4.20 (d, J = 11.7 Hz, 1H), 4.58 (m, 1H), and 6.70-7.79 (m, 23H); ¹³C NMR (125 MHz, CDCl₃) δ 22.3, 23.2, 25.3, 38.7, 41.7, 50.6, 52.6, 58.1, 72.6, 73.1, 81.4, 120.2, 120.4, 126.1, 126.2, 126.4, 126.7, 127.4, 128.0, 128.1, 128.3, 128.4, 128.5, 128.7, 128.9, 130.3, 137.9, 140.2, 140.6, 141.0, 146.0, 149.8, 150.8, 171.5, and 173.4 (Found; C, 79.09; H, 6.81; N, 4.29. C₄₃H₄₄ N₂O₄ requires C, 79.11; H, 6.79; N, 4.29%).

N-[(2*R*,3*R*)-3-amino-2-hydroxy-4-phenylbutanoyl]-L-leucine (4). This compound 4 was prepared according to the same method to obtain 2 and provided a solid; the yield for this conversion was 85%; mp 220-221 °C; $[\alpha]_D^{20}$ +30.3° (*c* 0.85, AcOH); IR (KBr) 3497, 3380, 3277, 2957, 2870, 1656, 1627 cm⁻¹; ¹H NMR (500 MHz, D₂O) δ0.95 (m, 6H), 1.61-1.75 (m, 3H), 2.89 (dd, *J* = 14.1, 8.2 Hz, 1H), 3.06 (dd, *J* = 14.1, 6.8 Hz, 1H), 3.73 (m, 1H), 4.29 (m, 2H), and 7.22-7.31 (m, 5H); ¹³C NMR (125 MHz, D₂O) δ21.0, 22.8, 25.4, 34.4, 41.4, 53.9, 57.1, 70.6, 127.3, 128.9, 129.6, 136.4, 171.4, and 178.7 (Found; C, 62.30; H, 7.84; N, 9.07. C₁₆H₂₄ N₂O₄ requires C, 62.32; H, 7.84; N, 9.08%).

Acknowledgements. This research was supported by the Korea Science and Engineering Foundation (KOSEF) through the Regional Animal Industry Research Center at Jinju National University, Jinju, Korea.

Supporting Information Available: ¹H NMR and ¹³C NMR of compounds **1-4** and EIMS of compounds **1** and **3**. This material is available *via* the Internet at *http://www.kcsnet.or.kr*.

References

- (a) Cole, D. C. *Tetrahedron* 1994, 50, 9517. (b) Juaristi, E.;
 Quintana, D.; Escalante, J. *Aldrichim. Acta* 1994, 27, 3.
- (a) Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.; Takeuchi, T. J. Antibiot. 1976, 29, 97. (b) Pearson, W. H.; Hines, J. V. J. Org. Chem. 1989, 54, 4235. (c) Suda, H.; Takita, T.; Aoyagi, T.; Umezawa, H. J. Antibiot. 1976, 29, 600. (d) Ha, H.-J.; Park, G.-S.;

- Ahn, Y.-G.; Lee, G. S. *Bioorg. Med. Chem. Lett.* **1988**, *8*, 1619. (e) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. *Angew. Chem. Intl. Ed. Engl.* **1994**, *33*, 15. (f) Umemura, E.; Tsuchiya, T.; Umezawa, S. *J. Antibiot.* **1988**, *41*, 530. (g) Okino, T.; Matsuda, H.; Murakami, M.; Yamaguchi, K. *Tetrahedron Lett.* **1993**, *34*, 501. (h) Lee, K. H.; Chung, Y. J.; Kim, Y. C.; Song, S. J. *Bull. Korean Chem. Soc.* **2005**, *26*, 1079.
- (a) Lee, B. W.; Lee, J. H.; Jang, K. C.; Kang, J. E.; Kim, J. H.; Park, K. M.; Park, K. H. Tetrahedron Lett. 2003, 44, 5905. (b) Seo, W. D.; Long, M. J. C.; Kim, J. H.; Park, J. K.; Park, K. M.; Park, K. H. Synlett 2005, 2289. (c) Herranz, R.; Castro-Pichel, J.; Vinuesa, S.; Garcia Lopez, M. T. J. Org. Chem. 1990, 55, 2232. (d) Matsumoto, T.; Kobayashi, Y.; Takemoto, Y.; Ito, Y.; Kamijo, T.; Harada, H.; Terashima, S. Tetrahedron Lett. 1990, 31, 4175. (e) Upadhya, T. T.; Sudalai, A. Tetrahedron: Asymmetry 1997, 8, 3685. (f) Rubin, A. E.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1997, 36, 2637. (g) Denis, J. N.; Greene, A. E.; Serra, A. A.; Luche, M. J. J. Org. Chem. 1986, 51, 46. (h) Escalante, J.; Juaristi, E. Tetrahedron Lett. 1995, 36, 4397. (i) Kobayashi, S.; Osobe, T.; Ohno, M. Tetrahedron Lett. 1984, 25, 5079.
- 4. Nishino, N.; Powers, J. C. Biochemistry 1979, 18, 4340.
- (a) Nagai, M.; Kojima, F.; Naganawa, H.; Hamada, M.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1997, 50, 82. (b) Aoyagi, T.; Yoshida, S.; Nakamura, Y.; Shigihara, Y.; Hamada, M.; Takeuchi, T. J. Antibiot. 1990, 43, 143.
- 6. (a) Kimura, T.; Shuto, D.; Kasai, S.; Liu, P.; Hidaka, K.; Hamada, T.; Hayashi, Y.; Hattori, C.; Asai, M.; Kitazume, S.; Saido, T. C.; Ishiura, S.; Kiso, Y. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 1527. (b) Kimura, T.; Shuto, D.; Hamada, Y.; Igawa, N.; Kasai, S.; Liu, P.; Hidaka, K.; Hamada, T.; Hayashi, Y.; Hiso, Y. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 211. (c) Kimura, T.; Hamada, Y.; Stochaj, M.; Ikari, H.; Nagamine, A.; Abdel-Rahman, H.; Igawa, N.; Hidaka, K.; Nguyen, J.-T.; Saito, K.; Hayashi, Y.; Kiso, Y. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2380.
- 7. (a) Brynda, J.; Rezacova, P.; Fabry, M.; Horejsi, M.; Stouracova, R.; Sedlacek, J.; Soucek, M.; Hradilek, M.; Lepsik, M.; Konvalinka, J. J. Med. Chem. 2004, 47, 2030. (b) Shuto, D.; Kasai, S.; Kimura, T.; Liu, P.; Hidaka, K.; Hamada, T.; Shibakawa, S.; Hayashi, Y.; Hattori, C.; Szabo, B.; Ishiura, S.; Kiso, Y. Bioorg. Med. Chem. Lett. 2003, 13, 4273.
- (a) Nishizawa, R.; Saino, T.; Takita, T.; Suda, H.; Aoyagi, T.; Umezawa, H. J. Med. Chem. 1977, 20, 510. (b) Herranz, R.; Castro-Pichel, J.; Garcia Lopez, T. Synthesis 1989, 703. (c) Rich, D. H.; Moon, B. J.; Boparai, A. S. J. Org. Chem. 1980, 45, 2288. (d) Rich, D. H.; Sun, E. T.; Boparai, A. S. J. Org. Chem. 1978, 43, 3624. (e) Rafiee, E.; Tangestaninejad, S.; Habibi, M. H.; Mirkhani, V. Bull. Korean Chem. Soc. 2005, 26, 1585.
- Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S. M.; Walker, F. J.; Woodard, S. S. Pure Appl. Chem. 1983, 55, 589.
- 10. Kato, K.; Sino, T.; Nishizawa, R.; Takita, T.; Umezawa, H. J. Chem. Soc. Perkin Trans. 1 1980, 1618.
- Lee, J. H.; Lee, B. W.; Jang, K. C.; Jeong, I.-Y.; Yang, M. S.; Lee, S. K.; Park, K. H. Synthesis 2003, 829.
- (a) Kim, J. H.; Long, M. J. C.; Seo, W. D.; Ryu, Y. B.; Yang, M. S.; Park, K. H. *J. Org. Chem.* 2005, 70, 4082. (b) Lubell, W. D.; Rapoport, H. *J. Am. Chem. Soc.* 1987, 109, 236. (c) Gerspacher, M.; Rapoport, H. *J. Org. Chem.* 1991, 56, 3700.
- (a) Park, K. H.; Yoon, Y. J.; Lee, S. G. Tetrahedron Lett. 1994, 35, 9737.
 (b) Lee, J. H.; Kang, J. E.; Yang, M. S.; Kang, K. Y.; Park, K. H. Tetrahedron 2001, 57, 10071.
 (c) Jeong, I.-Y.; Lee, J. H.; Lee, B. W.; Kim, J. H.; Park, K. H. Bull. Korean Chem. Soc. 2003, 24, 617.
- Kang, J. E.; Kim, J. H.; Lee, W. S.; Yang, M. S.; Park, K. H. Bull. Korean Chem. Soc. 1998, 19, 1369.