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The sequence of an enyne ring-closing metathesis (enyne-
RCM)*? followed by a Diels-Alder reaction has been
applied widely in organic synthesis for the expeditious
generation of molecular complexity. Although several dieno-
philes have been employed to date in Diels-Alder reactions
of the cyclic conjugated dienes generated from enyne-RCM,
singlet oxygen has not been one of them. The conjugated
dienes 5, which are readily obtained by enyne-RCM, could
be reacted with singlet oxygen® to generate the correspond-
ing cyclic peroxides 6, as shown in Scheme 1. The cyclic
peroxide unit is acomponent of many biologically important
structures; furthermore, it can be transformed into severa
other valuable skeletons. For example, reductive cleavage of
the O—O bond could generate alylic diols* Base- or
transition metal-catalyzed O—O bond cleavage, followed by
dehydration, is a well-known reaction strategy to synthesize
furans.**® We have recently reported the synthesis of 1,2-
oxaza and 1,2-diaza heterocycles, having a diverse range of
scaffolds, by ring-closing metathesis.®” Herein, we report
our recent results on the synthesis of cyclic peroxides by
Diels-Alder reactions between singlet oxygen and enyne-
RCM adducts.

The substituted enyne substrates 3 were prepared from the
secondary acohols 2 and N-Boc-protected akynyl hydroxyl-
amines 1 under the Mitsunobu conditions (Scheme 1). The
enynes 3 were treated with Grubbs' catalyst 4a according to
our previously reported procedure® to give the enyne-RCM
adducts 5 in moderate to good yields (Table 1). For sub-
strates 3e and 3g, more reactive second generation Grubbs
catalyst 4b was used for the metathesis reactions (Table 1,
entries5 and 7).

The subgtituted conjugated dienes 5 and previoudy
synthesized ones™ were utilized in the cycloaddition reaction
with singlet oxygen. Acetonitrile solutions of the dienes and
a catalytic amount of rose Bengal sensitizer were irradiated
using a400-W tungsten lamp while a steady flow of oxygen

was passed though the solution. The reaction flask was
cooled in an ice-bath during this procedure. Table 2
summarizes the results of these cycloaddition reactions. The
formation of 6a from the corresponding enyne-RCM adduct
was complete after 7 h; this product was isolated in 73%
yield (Table 2, entry 1). The analogous peroxide 6b was
obtained in 82% yield (Table 2, entry 2). The homologues
with adjacent 7- and 8-membered 1,2-oxaza rings were also
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Table 2. Dids-Alder Reactions of Conjugated Dienes with Singlet
Oxygen?

Entry  Time Product Yield (%)
@) 0\O 6a
1 7h Bocr{l S 73
2 7h 6b 82
3 6h 6c 75
4 6h 6d 80
5 8h 69
6e
66
6 11h 6f (trans only)?
70
7 12h 6g (trand/cis
=80: 20)¢
78
8 7h 6h (trang/cis
=51 : 49)¢
] 71
9 11h 6i (trans/cis
=58: 42)¢
Q 54 (89)°
10 16 h BocN 6h (89)

(trans only)¢

BnO

@Reaction conditions: O, cat. rose Bengal, 400-W tungsten lamp, CH3CN,
0 °C. PReaction tlme “Theyield in parenthesisis based on the recovered
starting material. “The relative stereochemistries were determined by
nOe experiments.

prepared in good yields (Table 2, entries 3 and 4).

Next, we examined dienes featuring greater degrees of
subgtitution on either their 1,2-oxaza or 1,2-dioxine ring.
Trisubstituted peroxide 6e was synthesized in 69% yield
(Table 2, entry 5). Additiona substituents on the 1,2-oxaza
rings results in the generation of two diasterecisomeric
products. In general, subgtituents on the carbon atom
adjacent to the ring-forming sites produced the higher
diasterecisomeric ratios. The peroxides 6f and 6j were
obtained as single diasterecisomers and 6g was obtained as
themgjor product ina4: 1 ratio (Table 2, entries 6, 10, and
7, respectively). On the other hand, compounds having
substituents positioned one extra carbon atom away from the
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ring-forming sites exhibited poor diastereosel ectivity — they
yielded nearly equal amounts of their two diastereoisomers —
but the yields of their products are comparable to those of
the other reactions (Table 2, entries 8 and 9).

In conclusion, we have shown that the reaction sequence
of an enyne-RCM followed by a [4+2] cycloaddition with
singlet oxygen is synthetically valuable method for the
synthesis of cyclic peroxides. By this reaction sequence, we
have synthesized several cyclic peroxidesfused with acyclic
hydroxylamine ring.
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8. Representative procedure for the singlet oxygen Diels-Alder
reaction: An acetonitrile solution (5 mL) of the RCM adduct (100
mg, 0.444 mmol) and a catalytic amount of rose Benga bengal
sensitizer (2 mg) was irradiated using a 400-W tungsten lamp
while a steady flow of oxygen was passed though the solution.
The reaction flask was cooled in an ice-bath during this procedure.
After 6 h, the solvent was removed under reduced pressure and the
residue mixture was column chromatographed on silica gel
(elution with 5% ethyl acetate in hexanes) to give 86 mg (75%) of
6¢. Spectral data for 6c: colorless oil; R = 0.2 (dlica gel, hexane/
EtOAc = 2: 1); *H NMR (500 MHz, CDCl3) 6 = 5.79 (s, 1H),
4.68-4.61 (m, 3H), 4.56-4.48 (m, 2H), 3.99 (d, J = 13.4 Hz, 1H),
3.34-3.28 (m, 1H), 2.26-2.24 (m, 1H), 2.14-2.11 (m, 1H), 1.49 (s,
9H); *C NMR (62.9 MHz, CDCl3) &= 155.7, 137.2, 120.7, 81.9,
79.0, 75.1, 69.8, 46.3, 32.6, 28.7; IR (film, cm™) 2976, 2930,
1706, 1404, 1368, 1251, 1168, 1117; HRMS: mV/z cdcd. for
Ci2H1sNOs (M+H)*: 258.1341; found: 258.1343.



