
Exactly Solvable Time-Dependent Problems  Bull. Korean Chem. Soc. 2002, Vol. 23, No. 12     1733

Exactly Solvable Time-Dependent Problems: Potentials of 
Monotonously Decreasing Function of Time

Tae Jun Park

Department of Chemistry, Dongguk University, Seoul 100-715, Korea
Received September 19, 2002

We solve the Schrödinger equation analytically for systems whose potentials have a certain time-dependence
(which is monotonously decreasing) and general coordinate-dependences. Only a few time-dependent systems
have been reported to be analytically solved whose potentials are constant, linear, and quadratic functions of
coordinate with arbitrary time-dependences. From a different perspective, we focus on the time-dependent
systems whose potentials are monotonously decreasing functions of time with arbitrary coordinate-
dependences. Time-dependent potential of any coordinate-dependence can be handled analytically by
transforming it to a time-independent potential of known solutions if its time-dependence is monotonously
decreasing. We do this by a unitary transformation of the wavefunction and variable transformations to change
the Schrödinger equation to be time-independent in new variables. These variables are then determined by
solving a set of simple differential equations. This way we are able to find and to obtain analytical solutions for
time-dependent potentials which we mention above. 
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Introduction

Time-dependent Schrödinger equations are not generally
solvable in closed forms even in one-dimension despite
much theoretical attention has been paid.1 Only a few
systems are analytically solved whose time-dependent
potentials are constant,2,3 linear,4,5 and quadratic6-12 functions
of coordinate. These problems are usually solved by trans-
forming the Schrödinger equations to the time-independent
forms either by introducing invariant operators4,6-8 or by
using canonical variables.5,9-12 

The most famous problem is a time-dependent quadratic
Hamiltonian which has various applications in quantum
optics such as the motion of ions in Paul trap10,11 and the
degenerate parametric amplifier.13 Since Lewis has solved it
by the invariant operator approach,6 the time-dependent
harmonic oscillator (TDHO) Hamiltonian has been investi-
gated by different methods for different physical problems.7,8

The time-dependent square barrier,2 square well,3 and linear
potential models4,5 have also been widely studied as these
problems have applications in atoms or semiconductors
under laser field. No analytical solutions have been yet
obtained for other time-dependent systems of physical
interests than these three types of Hamiltonian. 

In the present work, from a different perspective, we focus
attention and solve the Schrödinger equation for systems
whose potentials have a certain time-dependence (which is
monotonously decreasing) and various coordinate-depen-
dences which are physically as interesting as cases mention-
ed above. Time-dependent potential of any coordinate-
dependence can be solved analytically by transforming it to
a time-independent potential of known solutions if its time-
dependence is monotonously decreasing. We do this by a
unitary transformation of the wavefunction and variable

transformations to change the Schrödinger equation to be
time-independent in new variables. These variables are then
determined by solving a set of differential equations which
can be easily handled. This way we are able to find exactly
solvable time-dependent potentials which have aforemen-
tioned properties. 

This paper is organized as follows; in Sec. II we introduce
a unitary transform of the wavefunction and new variables to
simplify the Schrödinger equation. Then in Sec. III we
determine the new variables by solving a set of simple
auxiliary differential equations and derive the functional
form of time-dependent potentials which can be solved
exactly. In Sec. IV we apply the result to two systems which
are a monotonously decreasing time-dependent harmonic
oscillator and an Eckart barrier of monotonoulsy decreasing
height and position in time. We summarize and conclude in
Sec. V.

Transformation of Schrödinger Equation

One-dimensional Schrödinger equation for a time-depen-
dent potential is given as

(1)

where we assume  is equal to one. Using a unitary
transformation, we define Ψ(x,t) as

Ψ (x,t) = Φ (x,t)eif(x,t) (2)

Inserting Eq. (2) into Eq. (1), we have

(3)
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where the subscripts stand for partial differentiations with
respect to corresponding variables as fxx = , fx =

, and ft =  respectively. Here the subscripted
notations are adopted only for f (x,t) so that the Schrödinger
equation are easily identified in form. With solutions of the
following differential equation 

, (4)

Eq. (3) will be simplified as below;

(5)

In order to determine f (x,t), we assume that f (x,t) =
−iln g(x,t) and insert it into Eq. (4). We then have a
differential equation for g(x,t) as follows;

(6)

The solution of Eq. (6) is given as14

. (7)

which shows that g(x,t) can be determined if g(x,0) is known.
You may notice from Eq. (7) that g(x,t) is a time-dependent
gaussian with t−1 dependence regardless of the functional
form of g(x,0) . We will determine g(x,t) later. 

To remove the second term in the left hand side of Eq. (5),
we introduce new variables z= z(x,t) and s= s(t) and replace
the differential operators in x and t with ones in z and s, we
will have Eq. (5) to be given as

(8)

where . Comparing the coeffcients of differential
operators for both sides of the equality, we have following
equations for the variables z and s 

(9a)

, (9b)

which simplfy Eq. (8) as given below;

(10)

If the following relation holds

V(x,t) = U(z(x,t)), (11)

Eq. (10) would become a Schrödinger equation for the

time-independent potential U(z) and the solutions will be
easily obtained in new variables as

Φ (z,s) = φ (z)e−iEs (12)

where φ (z) is the solution of the time-independent
Schrödinger equation given as

(13)

and Ψ (x,t) will be obtained from Eqs. (2) and (12) as below;

Ψ (x,t) = g(x,t)φ (z(x,t))e−iEs(t). (14)

We need to determine the transformed variables z(x,t), s(t),
and g(x,t) which is equal to eif(x,t) to completely specify
Ψ (x,t).

Determination of z(x,t) and s(t) 

From Eq. (9b), we note that the first term in Eq. (9a)
would vanish. Integrating the resulting equation with respect
to t, we obtain 

z = − (15)

If we differentiate Eq. (15) with x and use zx = , we will
have an equation for  as

(16)

where dυ/dx disappears because  is a function of t only. We
note from Eq. (16) that fxx should be a function of t only and
we assume that fxx = 2iα(t). Solving Eq. (16) with this
assumption, we have s(t) as given below;

. (17)

We obtain z(x,t) by integrating  (which is evaluated
using Eq. (17)) with respect to x since zx = ). The
variable z(x,t) is then given as

(18)

where u(t) is found later. As long as fxx is a function of t only
Eq. (18) is equivalent to Eq. (15). Since 

fxx = −i  should be written as follows;

g(x,t) = exp[−α(t)x2 + β(t)x + γ(t)].  (19)

which is a time-dependent gaussian. Inserting g(ξ,0) = exp
[−α(0)ξ2 + β(0)ξ + γ(0)] into Eq. (7), we determine g(x,t) as
follows;
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(20)

where α0 = α(0), β0 = β(0), and γ 0 = γ (0) respectively.
Comparison of Eqs. (19) and (20) leads to α (t), β (t), and
γ (t) as follows;

(21a)

 (21b)

(21c)

As we expect from Eq. (7), functions α and β show t−1

dependence and they give proper initial values when t = 0.
To specify z(x,t) completely, we put Eq. (18) into Eq. (9a)
and we have u(t) as

. (22)

By inserting u(t) and α (t) into Eqs. (17) and (18), we finally
have z(x,t) and s(t) as given below;

z(x,t) = (2iα0t + m)−1  (23)

(24)

For systems whose potentials satisfy Eq. (11), we show that
Ψ (x,t) is completely determined as given in Eq. (14) where
g(x,t), z(x,t), and s(t) are given in Eqs. (20), (23), and (24)
respectively. The function φ (z) is again a solution of the
time-independent Schrödinger equation (Eq. (13)). As we
note from Eqs. (11), (23), and (24) the time-dependent
potentials for which we can solve Schrödinger equation have
monotonously decreasing dependence on t. These time-
dependent potentials may be derived from the time-
independent forms according to Eq. (11) since s(t) and z(x,t)
are explicitly obtained. In the following, we present two
examples to show how we use Eq. (11) to devise time-
dependent potentials. 

Examples

Although we can think of many time-dependent potentials
which satisfy Eq. (11), we provide a harmonic oscillator and
an Eckart barrier which have monotonous dependence on
time as examples.

A. Harmonic oscillator, V(x,t) = k(t)x2 where k(t) =

k0 (2iα0t + m)−4

This system can be exactly solved by other methods,10 but
we present it to show that the solution obtained in this work
is identical to that by those approaches. According to Eq.
(11), we have U(z) = k0z2 (Eq. (13) and β0 = 0) for the
potential V(x,t) and have solutions Φn(z,s) (Eq. (12)) given as

Φn(z,s) = Nnexp (25)

which is obtained as a stationary harmonic oscillator
wavefunction in z, and s. Nn, a, and En are 

, and  respectively.

Hn is the Hermite polynomial. The final wavefunction
Ψn(x,t) will become as follows;

Ψn(x,t) = Nnexp

(26)

where α (t), γ (t), z(x,t), and s(t) are given in Eqs. (21a),
(21c), (23), and (24) respectively.

B. Eckart barrier, V(x, t) = cosh−2 

Time-dependent barrier in general, whether it is simple or
realistic, is an important model for the study of condensed
phase processes such as dissociation or diffusion on
surface.15 Although analytical studies on time-dependent
square barriers have been made, no such work on a more
realistic time-dependent Eckart barrier has been done yet.
For the first time, we present an analytical solution for an
Eckart barrier with monotonously decreasing height and
position in time given above. 

The corresponding time-independent potential U(z) for
V(x,t) will be U(z) = V0cosh−2z (with β0 = 0) and the solution
becomes;

 Φ (z,s) = sec h−ikz F
(−ik−δ, −ik + δ + 1, −ik + 1, (1−tanh z))e−iEs (27)

where k = , δ = (−1 + ), and F is the
hypergeometric function. Then Ψ (x,t) will be

Ψ (x,t) = (28)

where  is given in Eq. (27), and α (t), γ (t),
z(x,t), and s(t) are same as the case A.

Conclusion

We derive an explicit time-dependent potential for which
Schrödinger equation can be exactly solved by a series of
transformations for wavefunctions and variables. Schrödinger
equation for any potentials of monotonously decreasing
functions of time can be transformed to time-independent
form in terms of new variables and the solution is obtained
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as a product of a time-dependent gaussian and a stationary
wavefunction for the corresponding time-independent
potential in new variables. In this work, we thus extend
exactly solvable time-dependent potentials to which have
more general coordinate-dependence than those have
constant, linear, and quadratic dependence reported before. 
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