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We solve the Schrédinger equation analytically for systems whose potentials have a certain time-dependence
(which is monotonously decreasing) and general coordinate-dependences. Only a few time-dependent systems
have been reported to be analytically solved whose potentials are constant, linear, and quadratic functions of
coordinate with arbitrary time-dependences. From a different perspective, we focus on the time-dependent
systems whose potentials are monotonously decreasing functions of time with arbitrary coordinate-
dependences. Time-dependent potential of any coordinate-dependence can be handled analytically by
transforming it to a time-independent potential of known solutions if its time-dependence is monotonously
decreasing. We do this by a unitary transformation of the wavefunction and variable transformations to change
the Schrédinger equation to be time-independent in new variables. These variables are then determined by
solving a set of simple differential equations. This way we are able to find and to obtain analytical solutions for
time-dependent potentials which we mention above.
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Introduction transformations to change the Schrédinger equation to be
time-independent in new variables. These variables are then
Time-dependent Schrédinger equations are not generaligetermined by solving a set of differential equations which
solvable in closed forms even in one-dimension despitean be easily handled. This way we are able to find exactly
much theoretical attention has been pai@nly a few solvable time-dependent potentials which have aforemen-
systems are analytically solved whose time-dependertioned properties.
potentials are constaft inear*® and quadratft'? functions This paper is organized as follows; in Sec. Il we introduce
of coordinate. These problems are usually solved by trans unitary transform of the wavefunction and new variables to
forming the Schrédinger equations to the time-independergimplify the Schrddinger equation. Then in Sec. lll we
forms either by introducing invariant operafdf® or by  determine the new variables by solving a set of simple
using canonical variablés;? auxiliary differential equations and derive the functional
The most famous problem is a time-dependent quadratiform of time-dependent potentials which can be solved
Hamiltonian which has various applications in quantumexactly. In Sec. IV we apply the result to two systems which
optics such as the motion of ions in Paul ¥aband the are a monotonously decreasing time-dependent harmonic
degenerate parametric amplifféiSince Lewis has solved it oscillator and an Eckart barrier of monotonoulsy decreasing
by the invariant operator approdthhe time-dependent height and position in time. We summarize and conclude in
harmonic oscillator (TDHO) Hamiltonian has been investi-Sec. V.
gated by different methods for different physical probléfns.
The time-dependent square barfisguare welf,and linear Transformation of Schrédinger Equation
potential modefs® have also been widely studied as these
problems have applications in atoms or semiconductors One-dimensional Schrédinger equation for a time-depen-
under laser field. No analytical solutions have been yetlent potential is given as
obtained for other time-dependent systems of physical
interests than these three types of Hamiltonian. idl.Udtx,t = _Zim fﬂ;(—t) + V(X0 Y(x1). 1)
In the present work, from a different perspective, we focus ox
attention and solve the Schrodinger equation for systemahere we assumd is equal to one. Using a unitary
whose potentials have a certain time-dependence (which tsansformation, we defin®#/(x,t) as
monotonou_sly decreas_mg) and_ various coordmate-dep(_en- W(xt) = & (x1)e @)
dences which are physically as interesting as cases mention-
ed above. Time-dependent potential of any coordinateinserting Eqg. (2) into Eg. (1), we have
dependence can be solved analytically by transforming it to 1 O P 0 P
a time-independent potential of known solutions if its time-—EnD—2 + Zifxd_x +if — 0P + V(X )@ = i%;t + iftEcD,
dependence is monotonously decreasing. We do this by a Lox 0
unitary transformation of the wavefunction and variable 3)
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where the subscripts stand for partial d|fferent|at|ons withtime-independent potentid)(2) and the solutions will be
respect to corresponding variables fas= FHC, = easily obtained in new variables as
dJflox, andf. = df/dt respectively. Here the subscripted _ _iEs
notations are adopted only fbfx,t) so that the Schrédinger ?29 =92 (12)
equation are easily identified in form. With solutions of thewhere @(z) is the solution of the time-independent

following differential equation Schrédinger equation given as
14
ot ot =, (4) oy tU@P=Eo (13)
Eqg. (3) will be simplified as below; and ¥ (x.t) will be obtained from Egs. (2) and (12) as below;
0g ot P W (x) = g @ (xn)e . (14)
_E—§ ZIfX—Da) V()P = IE ©®) We need to determine the transformed variaies, s(t),
and g(x,t) which is equal toe"™ to completely specify
In order to determind (xt), we assume that(xt) = W(xt).
—iln g(xt) and insert it into Eg. (4). We then have a
differential equation fog(x,t) as follows; Determination of z(x,t) and s(t)
0 = E'—gxx (6) From Eg. (9b), we note that the first term in Eq. (9a)
m would vanish. Integrating the resulting equation with respect
The solution of Eq. (6) is givends tot, we obtain
1 12
1r2mt? im(x—&)° z=-= " dt, + v(x). (15)
00 =5E 00 [, 9E0e IR lag @) =)

If we differentiate Eq. (15) witl and use, = s%, we will

which shows thag(x,t) can be determinedd{x,0) is known.  have an equation f&&@ as
You may notice from Eq. (7) tha(x) is a time-dependent
gaussian witht™ dependence regardless of the functional I 1 f &2t
form of g(x,0) . We will determineg(x,t) later. - mr XX 1

To remove the second term in the left hand side of Eq. (5
we introduce new variables= z(x,t) ands = 5(t) and replace
the differential operators xandt with ones inz ands, we
will have Eq. (5) to be given as

(16)

X}Vheredu/dx disappears because is a functiohanily. We

note from Eq. (16) thdty should be a function afonly and

we assume thaf,=2ia(t). Solving Eqg. (16) with this
assumption, we hasét) as given below;

1 1 2 F _ 2 §
_|:EZTmZxx —fox%—z j|(D +V(x )@ s(1) _r exp%— fxxdtZ%jtl
_ 44
I%tﬁ—z + Sa—sD ®) = r expy J" a(tz)dtzgjtl. (17)

We obtainz(x,t) by mtegratlngs (which |s evaluated
where s = dg/dt . Comparing the coeffcients of differential using Eqg. (17)) with respect t® since z = s ) The
operators for both sides of the equality, we have followingvariablez(xt) is then given as
equations for the variablesands

1 Z(X,t) JX eXpD mr 1:x X dtl%jxl

—z zxfx =iz, (9a)

= yexpL 2 O
2, (¢b) = xexp-= J‘ a(ty)dt,d+ u(t) (18)
whereu(t) is found later. As long ds:is a function ot only

which simplfy Eq. (8) as given below; Eq. (18) is equivalent to Eq. (15). Since

iZ ‘I;(SZ’Q - _51;] i ;"?3 FV)STOZY  (10) o= i “%E?Er g(x1 should be written as follows;
g(x.t) = expFa()x’ + Bt)x + y)]. (19)

If the following relation holds
_ which is a time-dependent gaussian. Inserjg0) = exp
V() = sU(zx1). 1D [—a(0)&+ BO)E + 1(0)] into Eq. (7), we determirg(x) as
Eg. (10) would become a Schrodinger equation for thdollows;
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m
e e
g(x9 /2i ot —exp

m iBZt

where ap = a(0), B = B(0), andy, = y(0) respectively.
Comparison of Egs. (19) and (20) leadsati), 3 (t), and
y(t) as follows;

ma,

a(t) = m, (21a)
BO) = g @1b)

_, LBt nm g
MO =1+ 2[2ia0t0+ m’ N&; agt + mD}' (21c)

As we expect from Eq. (7), functions and 8 showt™
dependence and they give proper initial values vihef.
To specifyz(x,t) completely, we put Eq. (18) into Eq. (9a)
and we have(t) as

u() = -2 At expd A a(t)dei,
By

=-i ———(2| apt + m) (22)
By insertingu(t) anda (t) into Egs. (17) and (18), we finally
havez(x,t) ands(t) as given below;

305

2x) = (Aot +m)™ - i (23)

s(t) = —Z%(zi agt+ m)‘1 (24)

For systems whose potentials satisfy Eq. (11), we show th%
W(x,t) is completely determined as given in Eq. (14) where
g(x,t), z(x,t), ands(t) are given in Egs. (20), (23), and (24)

respectively. The functiop(z) is again a solution of the
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ko (2iaot +m)™

This system can be exactly solved by other metHbiol,
we present it to show that the solution obtained in this work
is identical to that by those approaches. According to Eq.
(11), we havel(2) = 1/2kZ (Eq. (13) and3 = 0) for the
potentialV(x,t) and have solution@(z,s) (Eq. (12)) given as

Dn(z9) = NnexpD 12 7 - iE s%—i (a2 (25)

which is obtained as a stationary harmonic oscillator
wavefunction irg, ands. N,, a, andE, are

08 02 (oot %JE’ -
[b“n!fnu , (mky) ,andﬁw2 p respectively.
Hn is the Hermite polynomial.
Wh(x.t) will become as follows;

The final wavefunction

Wh(x,t) = Nnexpg—a(t)x2+ y(t)—%azzz(x,t)—iEns( t)%

x Ho(az(x 9) (26)

where a (t), y(t), z(xt), and(t) are given in Egs. (21a),
(21c), (23), and (24) respectively.

Vo 20X 0
(2 agt + m)° iagt +md]

Time-dependent barrier in general, whether it is simple or
realistic, is an important model for the study of condensed
phase processes such as dissociation or diffusion on
surface’® Although analytical studies on time-dependent
square barriers have been made, no such work on a more
realistic time-dependent Eckart barrier has been done yet.
For the first time, we present an analytical solution for an
Eckart barrier with monotonously decreasing height and
position in time given above.

The corresponding time-independent potentiét) for
(x t) will be U(2) = Vocosh?z (with B = 0) and the solution
ecomes;

®(z9) =sech*z F
(-ik-6, -ik + o+ 1,k + 1, = (1 tanhz))e =

B. Eckart barrier, V(x,t) =

(27)

time-independent Schrodinger equation (Eq. (13)). As we
note from Egs. (11), (23), and (24) the time-dependeniwvherek= /2mE, &= —(—1+ /1-8mV,), andF is the
potentials for which we can solve Schrédinger equation havlaypergeometric functioh. The (x.t) will be

monotonously decreasing dependencetoifhese time-

dependent potentials may be derived from the time-

independent forms according to Eq. (11) sis{€eandz(x,t)

are explicitly obtained. In the following, we present two where @(z(x1,s(t))

W(xt) = & TOIOTED gy ) s 1) (28)

is given in Eq. (27), ara(t), y(b),

examples to show how we use Eqg. (11) to devise timez(xt), ands(t) are same as the cabe

dependent potentials.

Examples

Conclusion

We derive an explicit time-dependent potential for which

Although we can think of many time-dependent potentialsSchrodinger equation can be exactly solved by a series of
which satisfy Eqg. (11), we provide a harmonic oscillator andransformations for wavefunctions and variables. Schrddinger
an Eckart barrier which have monotonous dependence ogquation for any potentials of monotonously decreasing
time as examples. functions of time can be transformed to time-independent

A. Harmonic oscillator, V(x;t) = 1/2k(t)x* where k(t) = form in terms of new variables and the solution is obtained
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