# **Articles**

# Structural Investigation of the Hydrolysis-Condensation Process of Modified Titanium Isopropoxide

M. W. Jung,\* H. J. Oh, J. C. Yang,† and Y. G. Shul†

Dept. of Chemistry, Sungshin Women's University, DongSundong, Seoul 136-742, Korea †Dept. of Chemical Engineering, Yonsei University, Sinchondong, Seoul 120-749, Korea Received October 1, 1999

The structures of modified Ti(OPr<sup>i</sup>)<sub>4</sub> with chelating ligands (L) such as ethylacetoacetate (Etac), acetylacetone (Acac) and methylacetoacetate (Mtac) were identified by using IR, <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopies, and the octahedral structure was confirmed after modification. The pre-edge peaks of XANES spectra of modified metal alkoxides also denoted the mixture of five-fold and six-fold structures. The EXAFS fitting results showed the local structure around Ti atom after alkoxide modification. The hydrolysis-condensation rates of modified Ti alkoxide with organic additives were investigated by <sup>1</sup>H NMR spectroscopy. The Ti(OPr<sup>i</sup>)<sub>4</sub> modified by Acac was less reactive toward hydrolysis-condensation reaction than those modified by the other alkoxides, which can be attributed to the stable ligand structure between Ti(OPr<sup>i</sup>)<sub>4</sub> and Acac. The small particle size of modified Ti(OPr<sup>i</sup>)<sub>4</sub> sol was obtained when Acac was employed.

#### Introduction

The chemical modification of metal alkoxide with alcohols, chlorides, acids/bases, and chelating ligands is commonly used to retard the hydrolysis and condensation reaction rates. These modification of metal alkoxides with chelating ligands results in the control of condensation pathway to evolve the inorganic polymer. Therefore, the particle size, morphology, and properties of the prepared gels are greatly affected by the types of precursors. Many results have been reported to describe the role of chelating ligand in the modification of metal alkoxide. Babonneau and Livage et al. had reported the structure of Al(OBu)<sub>3</sub> with ethylacetoacetate (Etac). The Etac groups modified the Al(OBu)<sub>3</sub> with the formation of bidentate ligand structure which was much less susceptible to hydrolysis reaction than Al(OBu)3. Nass et al.<sup>2</sup> had reported the modification of Al alkoxide with acetylacetone and ethylacetoacetate. This modification resulted in the small particle size of alumina sols in the range of 1 to 15 nm. The particle size of alumina sols strongly depended on the types of chelating ligands as well as on the molar ratio of Al(OBu)<sub>3</sub> to chelating ligands. Shul et al. had reported that chelating ligand of hexylene glycol was used in the rutilent phase of TiO<sub>2.</sub> This low temperature transformation of rutilent phase could be due to the stable bidentate ligand structure of modified Ti alkoxide with hexylene glycol. Yang et al.4 had reported that stable bidentate ligand structure between Al(OBu)3 and ethylene glycol affected the phase transformation behaviour of Ru/Al<sub>2</sub>O<sub>3</sub> as well as particle size of Ru after oxidation and reduction. These results reported the importance of alkoxide modification with chelating ligands and the effects of chelating agent on the properties of prepared gels. However, few systematic studies have been reported about the quantitative hydrolysis-condensation rate and stability of modified metal alkoxides. In the present study, the structure of modified Ti alkoxides with organic additives such as acetylacetone, methylacetoacetate and ethylacetoacetate was characterized using by <sup>1</sup>H NMR, <sup>13</sup>C NMR, FT-IR, and XANES/EXAFS spectroscopies. The hydrolysis and condensation rates of these modified metal alkoxides were obtained by <sup>1</sup>H NMR spectroscopy. The effects of organic additives on the properties of prepared sol/gel were also disscussed.

# **Experimental Section**

**General**. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded by using a Varian Gemini 200 spectrometer with the signals of the CDCl<sub>3</sub> solvent as an internal standard. FT-IR Spectra was obtained from a Nicolet Impact 410 spectrometer in the 4000-400 cm<sup>-1</sup> frequency range. Solutions were studied by putting a droplet between two KBr windows. TiO<sub>2</sub> powder dispersed in a KBr pellet was studied. Dynamic light scattering for the particle size measurement was recorded with a Brookhaven Zeta plus device. Elemental analysis was done by the Gmbh Vario Elemental Analysensysteme. Freshly distilled chemicals were purchased and used from the Aldrich Chemical Company. The reactions were carried out in dried solvents and under nitrogen gas. The volatile components were removed by vacuum distillation. X-ray absorption (XANES/EXAFS) at the K-edge (4968 eV) was performed the thickness of the cells was 0.1 mm, and the windows were made of X-ray-transparent kapton.

**Modified Ti(OPr**<sup>i</sup>)<sub>4-x</sub>(**L**)<sub>x</sub>. The compounds of acetylacetone, methylacetoacetate and ethylacetoacetate were individually added to  $\text{Ti}(\text{OPr}^{i})_{4}$  in isopropanol solvent in the following molar ratios: 1:1, 2:1, 3:1. The resulting pale-yellow solution was purified by vacuum distillation.

**Hydrolysis-condensation reaction.** Ti(OPr<sup>i</sup>)<sub>4-x</sub>(L)<sub>x</sub> was hydrolyzed with two equivalents of D<sub>2</sub>O containing CDCl<sub>3</sub> solvent. <sup>1</sup>H NMR spectra on these sol solutions were recorded at 10 minutes intervals. TiO<sub>2</sub> powder was obtained after drying these sol solutions in a vacuum oven (80 °C, 5 hours).

## **Results and Discussion**

The modified titanium alkoxides. In our study, a stoichiometric reaction for the production of the modified titanium alkoxide complexes take place as following.

$$Ti(OPr^{i})_{4} + x(Acac, Etac, Mtac: L) \rightarrow Ti(OPr^{i})_{4-x}(L)_{x} + x^{i}PrOH$$

The NMR peak assignments of various titanium complexes obtained from different molar ratios are indicated in Table 1. Firstly we examined the 1:1 molar ratio of Ti(OPr<sup>i</sup>)<sub>4</sub> and ethylacetoacetate in detail. Two kinds of peaks corresponding to methine position of the isopropoxide attached to titanium are shown in Figure 1 (a) and (b) and also labelled as

**Table 1.** <sup>1</sup>H and <sup>13</sup>C NMR data of modified Ti alkoxides in CDCl<sub>3</sub>

| Ti(OPr <sup>i</sup> ) <sub>4</sub> :<br>Organic<br>additive |     | <sup>1</sup> H NMR |                | <sup>13</sup> C NMR |                | Ctanatana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|-----|--------------------|----------------|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |     | $\delta$ (ppm)     | Assign<br>ment | $\delta$ (ppm)      | Assign<br>ment | Structure<br>suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Acetyl<br>-acetone                                          | 1:1 | 5.51               | c              | 191.3               | b              | $\begin{array}{c} \overset{d}{\overset{c}{\subset}} H_{1} & \overset{d}{\overset{c}{\subset}} H(CH_{3})_{2} \\ \overset{c}{\overset{c}{\subset}} H_{2} & \overset{c}{\overset{c}{\subset}} H(CH_{3})_{2} \\ H - \overset{c}{\overset{c}{\subset}} C \overset{c}{\overset{c}{\smile}} O & \overset{c}{\overset{c}{\smile}} H_{1} - C + H(CH_{3})_{2} \\ \overset{c}{\overset{c}{\subset}} H_{3} & \overset{c}{\overset{c}{\smile}} H(CH_{3})_{2} \\ & + (CH_{3})_{2} \overset{c}{\overset{c}{\subset}} HOH \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                             |     | 4.78, 4.49         | d              | 102.7               | c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 4.03               | e              | 78.7, 76.2          | d              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 2.03, 1.92         | a              | 64.2                | e              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             | 1:2 | 5.51               | c              | 191.3, 187.3        | b              | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |
|                                                             |     | 4.78               | d              | 102.7               | c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 4.02               | e              | 78.7                | d              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 2.03, 1.92         | a              | 64.4                | e              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ethyl-<br>aceto-<br>acetate                                 | 1:1 | 4.95               | С              | 184.8               | b              | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                             |     | 4.77, 4.49         | f              | 172.5               | d              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 4.03               | e, g           | 88.3                | c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 1.94               | a              | 79.1, 76.3          | f              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     |                    |                | 64.3                | g              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             | 1:2 | 4.95               | c              | 184.8               | b              | $\begin{array}{c} \overset{a}{\leftarrow} H_{1} & \overset{c}{\leftarrow} H_{1}(CH_{3})_{2} \\ \overset{a}{\leftarrow} H_{2} & \overset{c}{\leftarrow} D_{1} & \overset{c}{\rightarrow} D_{2} \\ \overset{c}{\leftarrow} D_{1} & \overset{c}{\rightarrow} D_{2} & \overset{c}{\leftarrow} C_{1} \\ \overset{c}{\leftarrow} D_{2} & \overset{c}{\rightarrow} D_{2} & \overset{c}{\rightarrow} D_{2} \\ \overset{c}{\leftarrow} H_{3} & \overset{c}{\leftarrow} H_{1} & \overset{c}{\leftarrow} H_{1} \\ & + 2(CH_{3})_{2}CHOH \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                             |     | 4.77               | f              | 172.5               | d              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 4.03               | e, g           | 88.3                | c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 1.94               | a              | 79.1                | f              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     |                    |                | 64.3                | g              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Methyl-<br>aceto-<br>acetate                                | 1:1 | 4.94               | c              | 185.1               | b              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             |     | 4.75, 4.49         | f              | 172.9               | d              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 4.03               | g              | 87.9                | c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 3.55               | e              | 79.3, 76.3          | f              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 1.92               | a              | 64.4                | g              | + (CH <sub>3</sub> ) <sub>2</sub> CHOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                             | 1:2 | 4.94               | c              | 185.1               | b              | CH <sub>1</sub> CH <sub>1</sub> CH <sub>3</sub> CH <sub>1</sub> CH <sub>3</sub> CH <sub>2</sub> CD O CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>4</sub> CH <sub>4</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>5</sub> CH <sub>4</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             |     | 4.75               | f              | 172.9               | d              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 4.03               | g              | 87.9                | c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 3.55               | e              | 79.3                | f              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |     | 1.92               | a              | 64.4                | g              | + 2(CH <sub>3</sub> ) <sub>2</sub> CHOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





Figure 1. IR, <sup>1</sup>H and <sup>13</sup>C NMR spectra of Ti(OPr<sup>i</sup>)<sub>3</sub>(Etac).

(c) in Table 1. We know that the above reaction took place due to the appearance of the new peak ( $\delta_{\rm H}=4.77$  ppm) while maintaining the expected peak ( $\delta_{\rm H}=4.49$  ppm) from Ti(OPr<sup>i</sup>)<sub>4</sub>. The above reaction is verified by the appearance of another peak at  $\delta_{\rm H}=4.03$  ppm which clearly indicates that isopropanol is released from the reaction. The CH<sub>3</sub> peak ( $\delta_{\rm H}=1.94$  ppm) and the two CO peaks ( $\delta_{\rm C1}=172.5$  ppm,  $\delta_{\rm C2}=184.8$  ppm) indicate the existance of a asymmetrical Ti-O bonding of the Etac. The ratio of the released CH peak of isopropanol ( $\delta_{\rm H}=4.03$  ppm) and the sum of the isopropoxide ( $\delta_{\rm H}=4.77$  ppm,  $\delta_{\rm H}=4.49$  ppm) attached to titanium was 1:3. We estimated that roughly 67 percent of the unreacted isopropoxide group remained in this reaction.

The broad absorption bands around 1096 cm<sup>-1</sup> (C-O) and 627 cm<sup>-1</sup>[v(Ti-O)] in a IR spectrum of this complex suggest that isopropoxide groups are still bonded to titanium. The absorption bands around 2900 cm<sup>-1</sup>[v(C-H)], 1630 cm<sup>-1</sup> (C=O), 1531 cm<sup>-1</sup> (C-C) and lower frequency at 470 cm<sup>-1</sup> [v(Ti-O) are evidence of Etac groups being bonded to titanium. The spectral data of this modified complex were different from Ti(OPr<sup>i</sup>)<sub>4</sub> which has equivalent isopropoxide groups.<sup>5</sup> Another evidence of the above reaction is that the XANES/EXAFS spectra of this complex shown in Figure 2 shows a single pre-peak and the intensity of this peak become smaller due to the chemical modification, this results suggesting that the coordination around titanium is changed from four to five or six.<sup>6</sup>

The XANES (X-ray absorption Near Edge Spectrum) of Ti is sensitive to the coordination structure and valence state of Ti atom. In the octahedral TiO<sub>2</sub> had small triplet pre-edge peaks, which associated with the  $A_{1g} \rightarrow T_{2g}$  and  $A_{1g} \rightarrow E_{g}$ 





**Figure 2.** Pre-edge of XANES (X-ray Absorption Near Edge Structure) spectra of Ti(OPr<sup>i</sup>)<sub>4</sub> and the modified with ethylaceto-acetate at Ti K-edge.

transition. In tetrahedral symmetry, the final states were T<sub>2</sub> and E (AIT2, A1E), and only one strong pre-edge peak near 4968eV can be observed. In the XANES of Ti(OPr<sup>i</sup>)<sub>4</sub>, one strong pre-edge peak is observed near 4969 eV and the height of pre-edge peak at *ca*. 4970 eV is 0.47, which shows the tetrahedral symmetry of Ti(OPr<sup>i</sup>)<sub>4</sub>. In the case of Ti(OPr<sup>i</sup>)<sub>3</sub>(Etac)<sub>2</sub>, the small new peak at 4969 eV is observed and the intensity of pre-edge peak at 4970 eV is decreased into 0.198. It implies the existence of octahedral symmetry of Ti atom in Ti(OPr<sup>i</sup>)<sub>2</sub>(Etac)<sub>2</sub>. However, the XANES spectra of Ti(OPr<sup>i</sup>)<sub>2</sub>(Etac)<sub>2</sub> is not completely similar to that of sixfold TiO<sub>2</sub>, anatase or rutile, which implies the mixture of five-fold and six fold octahedral structure in Ti(OPr<sup>i</sup>)<sub>2</sub>(Etac)<sub>2</sub>.

In a case when two or more moles of Etac were used for the reaction,  $^1H$  and  $^{13}C$  NMR signals of the  $\delta_H = 4.49$  ppm and  $\delta_C = 76.3$  ppm disappeared and others still remained. The ratio of the released CH peaks of isopropanol ( $\delta_H = 4.03$  ppm) and the isopropoxide ( $\delta_H = 4.77$  ppm) attached to titanium was equal. In the reaction of 1:2 or even excess molar ratio, two moles of isopropoxide was removed, replaced by two moles of Etac in Figure 3. The pre-edge peaks of XANES spectra of modified titanium-Etac complex has reduced intensity with two peaks shown. Where the above results denote the mixture of five-fold and six-fold octahedral structures of Ti(OPr<sup>i</sup>)<sub>2</sub>(Etac)<sub>2</sub>.

Modified titanium(IV) acetylacetone and methylacetoacetate complexes were also identified using the same method. The shape, position, and intensity of spectral data on these complexes are very similar to what has been discussed above (Table 1).



**Figure 3.** <sup>1</sup>H NMR spectra of modified Ti alkoxides with ethyl acetoacetate.  $[Ti(OPr^{i})_{4} : Etac = 1 : 3]$ 

**Hydrolysis-condensation reaction**.  $Ti(OPr^1)_{4-x}(L)_x$  was hydrolyzed with two equivalents of D<sub>2</sub>O containing CDCl<sub>3</sub> solvent. The rate of this reaction on the Ti(OPri)2(Etac)2 was observed by NMR spectroscopy progressing time and shown as representative example. Upon comparison of the three spectra, new signals appeared and also the signal intensity had changed. The multiplet peaks at 4.77 ppm corresponding to the -CH- part of the isopropoxy group bonded to titanium are removed by addition of D<sub>2</sub>O (Figure 4). The free isopropanol becomes clearly visible at a new peak position ( $\delta_{\rm H}$  = 3.96 ppm). The chemical shift of -OCH<sub>2</sub>- part of the ethylacetoacetate attached to titanium complex at 4.02 ppm is moved toward peak at 4.18 ppm corresponding to free ethylacetoacetate ligand during hydrolysis reaction. This peak at 4.18 ppm keeps on growing as time progresses. Furthermore, the -CH- peak of isopropyl group at 4.77 ppm rapidly disappeared. However methyl peak of Etac bonded to titanium at 1.92 ppm slowly hydrolyzed, but still reminants were shown in <sup>1</sup>H NMR spectra.

Ti(OPr<sup>i</sup>)<sub>3</sub>(Etac) was also hydrolyzed by the same condition and observed hydrolysis rate was faster than that of Ti(OPr<sup>i</sup>)<sub>2</sub>(Etac)<sub>2</sub> in Figure 5. The rate of hydrolysis-condensation reaction was inversely proprotional to the amount of ligand added: this was inclusive of all the ligands tested. It is postulated that the hydrolysis rate of the more stable six-fold structured Ti(OPr<sup>i</sup>)<sub>2</sub>(Etac)<sub>2</sub> is slower than the less stable five-fold structured Ti(OPr<sup>i</sup>)<sub>3</sub>(Etac).<sup>7</sup>

Upon comparison of the ligands, the rate of these reactions increased in the following order (Figure 6): Ti-Mtac > Ti-Etac > Ti-Acac bond. One could calculate rate constant in a direct way and the rates of these reaction are dependent on



**Figure 4.** <sup>1</sup>H NMR spectra of Ti(OPr<sup>i</sup>)<sub>2</sub>(Etac)<sub>2</sub> obtained at different time intervals in hydrolysis-condensation reaction.



**Figure 5.** Rates of hydrolysis-condensation of  $Ti(OPr^i)_{4-x}(Etac)_x$  in  $CDCl_3$ .  $C_i$ : concentration of  $Ti(OPr^i)_{4-x}(Etac)_x$  at t hours.  $C_o$ : initial concentration of  $Ti(OPr^i)_{4-x}(Etac)_x$ .



**Figure 6.** Rates of hydrolysis-condensation reaction of Ti(OPr<sup>i</sup>)<sub>2</sub> (L)<sub>2</sub> in CDCl<sub>3</sub> (L: Etac, Acac, and Mtac). C<sub>1</sub>: concentration of Ti(OPr<sup>i</sup>)<sub>2</sub>(L)<sub>2</sub> at t hours. C<sub>0</sub>: initial concentration of Ti(OPr<sup>i</sup>)<sub>2</sub>(L)<sub>2</sub>.



**Figure 7**. Particle size distributions of Ti alkoxide sol and modified Ti alkoxide sols with organic additives.

the type of ligand added.

The particle size of these hydrolyzed sol were measured on Ti(OPr<sup>i</sup>)<sub>2</sub>(OR)<sub>2</sub> (Figure 7). The size of TiO<sub>2</sub> sol without ligand was not homogeneous, the largest is approximately 205 nm. The particle size of modified TiO<sub>2</sub> sol with Mtac was 140 nm. The value of the smaller particle size with Etac was 13 nm and the smallest one obtained from the reaction with Acac was about 5 nm of homogeneous composition. The rate of hydrolysis-condensation reaction was related to the size of the particle of the resulting TiO2 sol. Homogeneous thin TiO<sub>2</sub> could be obtained by controlling hydrolysiscondensation rate which in turn is dependent on the type of ligand used.<sup>8</sup> Analyzing Data were obtained from the TiO<sub>2</sub> powder dried in a vacuum oven, the organic additives bonded to titanium was still identified as remaining. The strong absorption bands around 1630 cm<sup>-1</sup> [v(C=O)], 1531  $cm^{-1}$  [v(C-C)], 1270  $cm^{-1}$  [v(C-O)] and 470  $cm^{-1}$  [v(TiOEtac)] indicated the existence of these ligands in IR spectra. Elemental analysis data on TiO<sub>2</sub> powder with Etac ligand were obtained (O:  $8.98 \pm 0.45\%$ , C:  $10.47 \pm 0.11\%$ , H:  $2.53 \pm 0.07\%$ ).

## Conclusion

The modified titanium alkoxides with organic additives (chelating ligand) such as  $\beta$ -diketone and  $\beta$ -keto-ester such as acetylacetone, ethylacetoacetate, and methylacetoacetate have been described. The rate of the hydrolysis-condensation reaction is inversely proportional to the amount of ligand. Furthermore, the reaction decreases in the following order of Ti-Mtac, Ti-Etac, and Ti-Acac. The particle size in the TiO<sub>2</sub> sol are dependent upon the properties of the ligand used and the ratio of additives. The trace of ligand used in the final product, TiO<sub>2</sub> power, was also detected as existing bound to titanium.

Acknowledgment. The paper was supported by the

grants of KISTEP (Korea Institute of Science & Technology Evaluation and Planning).

# References

- Bonhomme-Coury, L.; Babonnearu, F.; Livage, J. J. Sol-Gel Sci. & Tech. 1994, 3, 157.
- Nass, R.; Schmidt, J. H. Non-Crystalline Solids 1990, 121, 329
- Shul, Y. G.; Oh, K. S.; Yang, J. C.; Jung, J. K. T. Sol-Gel Sci. & Tech. 1997, 8, 255.
- 4. Yang, J. C.; Shul, Y. G. Catal. Lett. 1996, 36, 41.
- Bradley, D. C.; Mehrotra, R. C.; Gaur, D. P. Metal Alkoxides; Academic Press: New York, 1978.
- Livage, J.; Henry, M. Ultrastructure Process of Advanced Materials; Mackenzie, J. et al., Eds.; John Wiley and Sons: New York, 1998; p 78.
- 7. Sedlar, M.; Sayer, J. M. Sol-Gel Sci. & Tech. 1995, 5, 27.
- Babonneau, F.; Coury, L.; Livage, J. J. Non-Crystalline Solids 1990, 121, 153.