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An artificial neural network (ANN) is successfully presented for prediction acidity constant (pKa) of various

benzoic acids and phenols with diverse chemical structures using a nonlinear quantitative structure-property

relationship. A three-layered feed forward ANN with back-propagation of error was generated using six

molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The polarizability term

(π I), most positive charge of acidic hydrogen atom (q+), molecular weight (MW), most negative charge of the

acidic oxygen atom (q−), the hydrogen-bond accepting ability (εB) and partial charge weighted topological

electronic (PCWTE) descriptors are inputs and its output is pKa. It was found that properly selected and trained

neural network with 205 compounds could fairly represent dependence of the acidity constant on molecular

descriptors. For evaluation of the predictive power of the generated ANN, an optimized network was applied

for prediction pKa values of 37 compounds in the prediction set, which were not used in the optimization

procedure. Squared correlation coefficient (R2) and root mean square error (RMSE) of 0.9147 and 0.9388 for

prediction set by the MLR model should be compared with the values of 0.9939 and 0.2575 by the ANN model.

These improvements are due to the fact that acidity constant of benzoic acids and phenols in water shows

nonlinear correlations with the molecular descriptors.

Key Words : Quantitative structure-property relationship, Artificial neural networks, Acidity constant, Phe-

nols, Benzoic acids

Introduction

The macroscopic (bulk) activities/properties of chemical

compounds clearly depend on their microscopic (structural)

characteristics. Development of quantitative structure-pro-

perty/activity relationships (QSPR/QSAR) on theoretical

descriptors is a powerful tool not only for prediction of the

chemical, physical and biological properties/activities of

compounds, but also for deeper understanding of the de-

tailed mechanisms of interactions in complex systems that

predetermine these properties/activities.1-10 QSPR/QSAR

models are essentially calibration models in which the

independent variables are molecular descriptors that describe

the structure of the molecules and the dependent variable is

the property or activity of interest. Since these theoretical

descriptors are determined solely from computational

methods, a priori predictions of the properties/activities of

compounds are possible, no laboratory measurements are

needed thus saving time, space, materials, equipment and

alleviating safety (toxicity) and disposal concerns. An enor-

mous number of descriptors have been used by researchers

to increase the ability to correlate biological, chemical and

physical properties. To obtain a significant correlation, it is

crucial that appropriate descriptors be employed.11,12

Various methods for constructing QSPR/QSAR models

have been used including multi-parameter linear regression

(MLR), principal component analysis (PCA) and partial

least-squares regression (PLS).13-16 In some cases, it is more

convenient that a linear relationship between property/

activity and descriptors is considered. If there is not a well-

defined linear relationship, the discussed method cannot

give a perfect QSPR/QSAR model. Artificial neural net-

works (ANNs) are capable of recognizing highly nonlinear

relationships.17-20 ANNs are biologically inspired computer

programs designed to simulate the way in which the human

brain processes information. ANNs gather their knowledge

by detecting the patterns and relationships in data and

learned (or trained) through experience, not from program-

ming. There are many types of neural networks designed by

now and new ones are invented every week.20 The behavior

of a neural network is determined by transfer functions of its

neurons, by learning rule, and by the architecture itself. An

ANN is formed from artificial neuron or processing

elements (PE), connected with coefficients (weights), which

constitute the neural structure and are organized in layers.

The first layer is termed the input layer, and the last layer is

the output layer. The layers of neurons between the input and

output layers are called hidden layers. Neural networks do

not need on explicit formulation of the mathematical or

physical relationships of the handled problem. These give

ANNs an advantage over traditional fitting methods for

some chemical application. For these reason in recent years,

ANNs have been used to a wide variety of chemical

problems such as simulation of mass spectra, ion interaction

chromatography, aqueous solubility and partition coeffi-

cient, simulation of nuclear magnetic resonance spectra,

prediction of bioconcentration factor, solvent effects on

reaction rate and prediction of normalized polarity parameter
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in mixed solvent systems.21-36

It has been shown that the acid-base properties affect the

toxicity, chromatographic retention behavior and pharma-

ceutical properties of organic acids and bases.37,38 On the

other hand, interpretation and prediction of pKa values for

chemical compounds are of general importance and useful-

ness for chemists.39 Although in the last years several

theoretical studies have been performed for correlation of

pKa values with molecular parameters, but in these studies

linear equations have been used.38-46 

The main aim of present work is to develop a linear and

nonlinear QSPR models based on molecular descriptors for

prediction pKa values of various benzoic acids and phenols

with diverse chemical structures (including 242 com-

pounds). 

Theory

A detailed description of theory behind a neural network

has been adequately described by different researchers.17-19

There are many types of neural network architectures, but

the type that has been most useful for QSAR/QSPR studies

is the multilayer feed - forward network with back-propa-

gation (BP) learning rule.20 The number of neurons in the

input and output layers are defined by system's properties.

The number of neurons in the hidden layer could be

considered as an adjustable parameter, which should be

optimized. The input layer receives the experimental or

theoretical information. The output layer produces the

calculated values of dependent variable. The use of ANNs

consists of two steps: “training” and “prediction”. In the

training phase the optimum structure, weight coefficients

and biases are searched for. These parameters are found

from training and validation data sets. After the training

phase, the trained network can be used to predict (or

calculate) the outputs from a set of inputs. ANNs allow one

to estimate relationships between input variables and one or

several output dependent variables. The ANN reads the

input and target values in the training data set and changes

the values of the weighted links to reduce the difference

between the calculated output and target values. The error

between output and target values is minimized across many

training cycles until network reaches specified level of

accuracy. If a network is left to train for too long, however, it

will overtrain and will lose the ability to generalize.22-36 

Experimental Section

Descriptor generation. The derivation of theoretical

molecular descriptors proceeds from the chemical structure

of the compounds. In order to calculate the theoretical

descriptors, the z-matrices (molecular models) were con-

structed with the aid of HyperChem 7.0 and molecular

structures were optimized using AM1 algorithm.47 In order

to calculate some of theoretical descriptors, the molecular

geometries of molecules were further optimized with the

same algorithm in MOPAC program version 6.0. The other

molecular electronic descriptors were calculated by Dragon

package version 2.1.48 For this propose the output of the

HyperChem software for each compound feed into the

Dragon program and the descriptors were calculated. As a

result, a total of 18 theoretical descriptors were calculated

for each compound in the data sets (242 compounds).

Linear correlations. Acidity constant of benzoic acids

and phenols are literature values at 25 ºC.49 MLR model was

developed for prediction of pKa values by molecular

descriptors. The method of stepwise multi-parameter linear

regression was used to select the most important descriptors

and to calculate the coefficients relating the pKa to the

descriptors. The MLR models were generated using spss/pc

software package release 9.0. 

Neural network generation. The specification of a

typical neural network model requires the choice of the type

of inputs, the number of hidden layers, the number of

neurons in each hidden layer and the connection structure

between the inputs and the output layers. The number of

input nodes in the ANNs was equal to the number of

molecular descriptors in the MLR model. A three-layer

network with a sigmoidal transfer function was designed.

The initial weights were randomly selected between 0 and 1.

Before training, the input and output values were normalized

between 0.1 and 0.9. The optimization of the weights and

biases was carried out according to the resilient back-

propagation algorithm.50 The data set was randomly divided

into three groups: a training set, a validation set and a

prediction set consisting of 168, 37 and 37 molecules,

respectively. The training and validation sets were used for

the model generation and the prediction set was used for

evaluation of the generated model, because a prediction set

is a better estimator of the ANN generalization ability than a

validation (monitoring) set.51

The performances of training, validation and prediction of

ANNs are evaluated by the mean percentage deviation

(MPD) and root-mean square error (RMSE), which are

defined as follows:

MPD = (1)

RMSE = (2)

where Pi
exp and Pi

cal are experimental and calculated values

of pKa with the models and N denote the number of data

points.

Individual percent deviation (IPD) is defined as follows:

 IPD = 100 × (3) 

The processing of the data was carried using Matlab 6.5.52

The neural networks were implemented using Neural

Network Toolbox Ver. 4.0 for Matlab.50
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Results and Discussion

A major challenge in the development of MLR equations

is connected with the possible multicollinearity of molecular

descriptors. In order to decrease the redundancy existed in

the descriptors data matrix, the correlation of descriptors

with each other and with pKa of the compounds was

examined and collinear descriptors were detected (r > 0.85).

Among the collinear descriptors, one with the lowest

correlation with the property was removed from the data

matrix. Table 1 demonstrates that all of the descriptors are

strongly orthogonal which reflects the statistical reliability

of the model.

Multi-parameter linear correlation of pKa values of 168

benzoic acids and phenols versus the molecular descriptors

in the training set gives the results in Table 2. It can be seen

from this table that six descriptors are appeared in the MLR

model. These descriptors are: polarizability index (π I), most

positive charge of acidic hydrogen atom (q+), molecular

weight (MW), most negative charge of acidic oxygen atom

(q−), the hydrogen-bond accepting ability (ε B) and partial

charge weighted topological electronic (PCWTE) descrip-

tors.

The negative coefficient for π I, q
+, q− and MW descriptors

indicate that with increasing these descriptors, acidity con-

stant (Ka) increases. With increasing q+ and q− of the com-

pounds, interactions of water molecules with acidic hydro-

gen and oxygen of the compounds increase, then acidic

hydrogen can be easily removed from the compounds.

Polarizability and then the dipole-induced dipole interac-

tions increase with increasing π I and MW, as a result acidity

of the compounds increases with increasing these descrip-

tors.53 Acidity constant of the compounds decrease with

increasing ε B and PCWTE descriptors, because basicity of

phenolic oxygen atom increases with increasing these

descriptors. Effects of π I, q
+ and MW on pKa are higher than

that of the other descriptors, because standardized coeffi-

cients of π I, q
+ and MW are higher than those of the other

descriptors. 

The calculated values of pKa for the compounds in

training, validation and prediction sets using the MLR model

have been plotted versus the experimental values of it in

Figure 1. 

The next step in this work was generation of the ANN

model. There are no rigorous theoretical principles for

choosing the proper network topology; so different struc-

tures were tested in order to obtain the optimal hidden

neurons and training cycles.36 Before training the network,

the number of nodes in the hidden layer was optimized. In

order to optimize the number of nodes in the hidden layer,

several training sessions were conducted with different

numbers of hidden nodes. The root mean squared error of

training (RMSET) and validation (RMSEV) sets were

obtained at various iterations for different number of neu-

Table 1. Correlation coefficients between various theoretical
descriptors that have been used in the multi-parameter linear
regression (MLR) and artificial neural network (ANN) models

Descriptor πI q+ q− εB MW PCWTE

πI 1 0.530 0.042 0.150 0.329 0.285

q+ 0.530 1 0.642 0.546 0.368 0.070

q− 0.042 0.642 1 0.236 0.155 0.018

εB 0.150 0.546 0.236 1 0.248 0.038

MW 0.329 0.368 0.155 0.248 1 0.237

PCWTE 0.285 0.070 0.018 0.038 0.237 1

Table 2. Descriptors, symbols and results of the multi-parameter linear regression (MLR) modela

No. Descriptor Symbol Coefficient β
1 polarizability term πI −8.3610 0.080

2 most positive charge of acidic hydrogen atom q+ −110.4710 0.521

3 molecular weight MW −0.0051 0.074

4 most negative charge of the phenolic oxygen atom q _ −26.3940 0.321

5 the hydrogen-bond accepting ability εB 34.4450 0.080

6 partial charge weighted topological electronic PCWTE 0.0902 0.101

7 constant 42.2780

a The β is standardized coefficient of descriptors. The polarizability term (π I) is obtained by dividing the polarizability volume by the molecular volume.
The ε B is equal 0.3–0.01(Elw–Eh), in which Elw and Eh are referring to the LUMO energy for water and HOMO energy for the compound, respectively. 

Figure 1. Plot of the calculated values of pKa from the MLR model
versus the experimental values of it for training, validation and
prediction sets.
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rons at the hidden layer and the minimum value of RMSEV

was recorded as the optimum value. Plot of RMSET and

RMSEV versus the number of nodes in the hidden layer has

been shown in Figure 2. It is clear that the twenty-four nodes

in hidden layer is optimum value.

The six descriptors appearing in the MLR model (includ-

ing π I, q+, MW, q−, ε B, and PCWTE descriptors) were

considered as inputs for developing the ANN. Then an ANN

with architecture 6-24-1 was generated. It is note worthy that

training of the network was stopped when the RMSEV

started to increases i.e. when overtraining begins. The over-

training causes the ANN to loose its prediction power.34,36

Therefore, during training of the networks, it is desirable that

iterations are stopped when overtraining begins. To control

the overtraining of the network during the training proce-

dure, the values of RMSET and RMSEV were calculated

and recorded to monitor the extent of the learning in various

iterations. Results obtained showed that after 77000 iter-

ations the value of RMSEV started to increase very little and

overfitting slightly began (Figure 3).

The generated ANN was then trained using the training

and validation sets for the optimization of the weights and

biases. For the evaluation of the predictive power of the

generated ANN, an optimized network was applied for

prediction of the pKa values of the compounds in the

prediction set, which were not used in the modeling proce-

dure (Table 3). The calculated values of pKa for the

compounds in training, validation and prediction sets using

the ANN model have been plotted versus the experimental

values of it in Figure 4. 

As expected, the calculated values of pKa are in good

agreement with those of the experimental values. The

correlation equation for all of the calculated values of pKa

from the ANN model and the experimental values is as

follows: 

 pKa(cal) = 0.99299 pKa(exp) + 0.04454 (4)

(R2 = 0.9931; MPD = 4.5044; RMSE = 0.2648; F = 34295.94)

Similarly, the correlation of pKa (cal) versus pKa (exp)

values in the prediction set gives equation (5): 

 pKa(cal) = 1.01212pKa(exp) – 0.08200 (5)

(R2 = 0.9939; MPD = 5.0361; RMSE = 0.2575; F = 5718.11)

Plot of IPD for pKa values in the prediction set versus the

experimental values of it has been illustrated in Figure 5. As

can be seen, the model did not show proportional and

systematic error, because the slope (a = 1.01212) and

intercept (b = −0.08200) of the correlation equation are not

significantly different from unity and zero, respectively and

the propagation of errors in both sides of zero is random

(Figure 5).

Table 4 compares the results obtained using the MLR and

ANN models. The squared correlation coefficient (R2) and

RMSE of the models for total, training, validation and

prediction sets show potential of the ANN model for predic-

tion of pKa values of various benzoic acids and phenols in

water with one model. 

As a result, it was found that properly selected and trained

neural network could fairly represent dependence of the

acidity constant of benzoic acids and phenols in water on the

molecular descriptors. Then the optimized neural network

could simulate the complicated nonlinear relationship

between pKa values and the molecular descriptors. It can be

seen from Table 4 that although the parameters appearing in

the MLR model are used as inputs for the generated ANN,

the statistics is shown a large improvement. These improve-

ments are due to the fact that pKa values of the compounds

show nonlinear correlations with the molecular descriptors.

Figure 2. Plot of RMSE for training and validation sets versus the
number of nodes in hidden layer.

Figure 3. Plot of RMSE for training and validation sets versus the
number of iterations.
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Table 3. Experimental and calculated values of pKa for various benzoic acids and phenols in water at 25 ºC for training, validation and
prediction sets by multi-parameter linear regression (MLR) and artificial neural network (ANN) models along with individual percent
deviation (IPD)a  

No. Compound Exp. MLR IPDMLR ANN IPDANN

1

Training set

2-acetylphenol 9.19 10.867 18.25 9.272 0.89

2 4-acetylphenol 8.05 9.05 12.42 8.794 9.24

3 2-allylphenol 10.28 9.637 −6.25 9.972 −3.00

4 4-bromophenol 9.34 8.42 −9.85 9.126 −2.29

5 2,6-di-tert-butyl-4-bromophenol 10.83 10.011 −7.56 10.975 1.34

6 2,6-di-tert-butyl-4-methylphenol 12.23 11.201 −8.41 11.983 −2.02

7 2,6-di-tert-butyl-4-methoxyphenol 12.15 11.484 −5.48 11.936 −1.76

8 2-tert-butylphenol 11.24 10.96 −2.49 10.752 −4.34

9 3-tert-butylphenol 10.1 10.773 6.66 10.504 4.00

10 4-tert-butylphenol 10.31 10.768 4.44 10.788 4.64

11 1-chloro-2,6-dimethyl-4-hydroxybenzene 9.549 9.476 −0.76 9.944 4.14

12 4-chloro-2-nitrophenol 6.48 7.724 19.20 6.475 −0.08

13 2-chlorophenol 8.55 8.974 4.96 8.117 −5.06

14 3-chlorophenol 9.10 8.72 −4.18 8.971 −1.42

15 4-chlorophenol 9.43 8.725 −7.48 9.03 −4.24

16 o-cresol 10.26 9.875 −3.75 10.174 −0.84

17 4-cyano-2,6-dimethylphenol 8.27 7.934 −4.06 7.872 −4.81

18 4-cyano-3,5-dimethylphenol 8.21 8.869 8.03 8.033 −2.16

19 3-cyanophenol 8.61 8.168 −5.13 8.2 −4.76

20 3,5-dibromophenol 8.056 7.186 −10.80 8.024 −0.40

21 2,4-dichlorophenol 7.85 8.141 3.71 7.96 1.40

22 2,6-dichlorophenol 6.78 7.264 7.14 6.827 0.69

23 3,5-diethoxyphenol 9.370 9.813 4.73 9.529 1.70

24 3-(diethoxyphosphinyl)phenol 8.68 9.267 6.76 8.628 −0.60

25 4-(diethoxyphosphinyl)phenol 8.28 8.517 2.86 8.276 −0.05

26 3,4-dihydroxybenzaldehyde 7.55 6.84 −9.40 7.623 0.97

27 1,2-dihydroxybenzene 9.356 10.487 12.09 9.456 1.07

28 1,4-dihydroxy-2,6-dinitrobenzene 4.42 2.184 −50.59 4.425 0.11

29 1,3-dihydroxy-2-methylbenzene 10.05 9.685 −3.63 9.603 −4.45

30 1,2-dihydroxy-3-nitrobenzene 6.68 3.728 −44.19 6.68 0.00

31 1,2-dihydroxy-4-nitrobenzene 6.701 8.082 20.61 6.824 1.84

32 3,5-diiodophenol 8.103 6.653 −17.89 8.126 0.28

33 3,5-dimethoxyphenol 9.345 9.32 −0.27 9.497 1.63

34 2,6-dimethyl-4-nitrophenol 7.190 7.736 7.59 7.439 3.46

35 3,5-dimethyl-4-nitrophenol 8.245 8.131 −1.38 8.299 0.65

36 2,3-dimethylphenol 10.50 10.117 −3.65 10.246 −2.42

37 2,6-dimethylphenol 10.59 9.824 −7.23 10.264 −3.08

38 3,4-dimethylphenol 10.32 10.055 −2.57 10.298 −0.21

39 3,5-dimethylphenol 10.15 10.113 −0.36 10.068 −0.81

40 2,4-dinitrophenol 4.08 6.75 65.44 4.081 0.02

41 2,5-dinitrophenol 5.216 6.568 25.92 5.222 0.12

42 3,5-dinitrophenol 6.732 5.961 −11.45 6.658 −1.10

43 2-ethoxyphenol 10.109 10.886 7.69 10.117 0.08

44 3-ethoxyphenol 9.655 9.801 1.51 9.617 −0.39

45 2-ethylphenol 10.2 10.221 0.21 10.28 0.78

46 2-fluorophenol 8.73 9.247 5.92 9.112 4.38

47 3-fluorophenol 9.29 9.072 −2.35 9.16 −1.40

48 4-fluorophenol 9.89 9.078 −8.21 9.992 1.03

49 2'-hydroxyacetophenone 9.90 8.906 −10.04 9.232 −6.75

50 3'-hydroxyacetophenone 9.19 9.114 −0.83 9.46 2.94

51 3-hydroxybenzaldehyde 9.00 8.799 −2.23 9.25 2.78

52 4-hydroxybenzaldehyde 7.620 8.423 10.54 7.96 4.46
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Table 3. Continued

No. Compound Exp. MLR IPDMLR ANN IPDANN

53 2-hydroxybenzyl alcohol 9.92 8.355 −15.78 10.146 2.28

54 3-hydroxybenzyl alcohol 9.83 9.663 −1.70 9.866 0.37

55 1-hydroxy-2,4-dihydroxymethylbenzene 9.79 8.488 −13.30 9.615 −1.79

56 2-hydroxy-3-methoxybenzaldehyde 7.912 7.76 −1.92 7.974 0.78

57 (2-hydroxy-5-methylbenzene)-methanol 10.15 8.525 −16.01 9.876 −2.70

58 1-hydroxy-2-propylbenzene 10.50 10.439 −0.58 10.586 0.82

59 4-hydroxy-α,α,α-trifluorotoluene 8.675 8.982 3.54 8.559 −1.34

60 1-hydroxy-2,4,6-trihydroxymethylbenzene 9.56 8.357 −12.58 9.623 0.66

61 4-indanol 10.32 10.033 −2.78 10.289 −0.30

62 4-iodophenol 9.200 7.939 −13.71 9.088 −1.22

63 2,6-di-iodo-4-nitrophenol 3.32 4.131 24.43 3.304 −0.48

64 2-methoxyphenol 9.99 10.489 4.99 9.427 −5.64

65 2-methoxy-4-(2-propenyl)phenol 10.0 10.686 6.86 10.093 0.93

66 6-methyl-2-butylphenol 11.72 10.478 −10.60 11.065 −5.59

67 2-methyl-4-tert-butylphenol 10.59 10.963 3.52 11.007 3.94

68 2,2'-methylenebis(4-chlorophenol) 7.6 8.15 7.24 7.566 −0.45

69 2,2'-methylenebis(4,6-dichlorophenol) 5.6 6.129 9.45 5.637 0.66

70 4-methylsulfonyl-3,5-dimethylphenol 8.13 8.435 3.75 8.094 −0.44

71 3-(s-methylthio)phenol 9.53 8.572 −10.05 9.636 1.11

72 4-(s-methylthio)phenol 9.53 8.717 -8.53 9.743 2.24

73 2-nitrohydroquinone 7.63 8.45 10.75 7.633 0.04

74 2-nitrophenol 7.222 8.396 16.26 7.166 −0.78

75 4-nitrosophenol 6.48 7.768 19.88 6.693 3.29

76 phenol 9.99 9.578 −4.12 10.346 3.56

77 2-phenylphenol 9.55 8.847 −7.36 9.367 −1.92

78 5,6,7,8-tetrahydro-1-naphthol 10.28 9.883 −3.86 10.473 1.88

79 5,6,7,8-tetrahydro-2-naphthol 10.48 10.088 −3.74 10.639 1.52

80 2,4,6-tri-tert-butylphenol 12.19 11.724 −3.82 12.342 1.25

81 2,4,5-trichlorophenol 7.37 7.345 −0.34 7.396 0.35

82 3,4,5-trichlorophenol 7.839 7.275 −7.19 7.771 −0.87

83 3-trifluoromethylphenol 8.950 9.098 1.65 9.242 3.26

84 2,3,4-trimethylphenol 10.59 10.322 −2.53 10.648 0.55

85 2,4,5-trimethylphenol 10.57 10.325 −2.32 10.684 1.08

86 3,4,5-trimethylphenol 10.25 10.358 1.05 10.498 2.42

87 2,4,6-trimethylphenol 10.88 10.002 −8.07 10.58 −2.76

88 2,4,6-tripropylphenol 11.47 10.741 −6.36 11.165 −2.66

89 2-acetamidobenzoic acid 3.63 4.692 29.26 3.641 0.30

90 3-acetamidobenzoic acid 4.07 4.289 5.38 4.212 3.49

91 4-acetamidobenzoic acid 4.28 4.035 −5.72 3.87 −9.58

92 4-acetoxybenzoic acid 4.38 3.351 −23.49 3.979 −9.16

93 2-acetylbenzoic acid 4.13 4.025 −2.54 4.023 −2.59

94 3-acetylbenzoic acid 3.83 3.79 −1.04 3.597 −6.08

95 4-acetylbenzoic acid 3.70 3.654 −1.24 3.87 4.59

96 3-amino-1-naphthoic acid 2.61 3.817 46.25 2.834 8.58

97 anthracene-9-carboxylic acid 3.65 2.991 −18.05 3.562 −2.41

98 1,3-benzenedicarboxylic acid 3.62 3.374 −6.80 3.571 −1.35

99 1,4-benzenedicarboxylic acid 3.54 3.266 −7.74 3.975 12.29

100 1,2,4,5-benzenetetracarboxylic acid 1.92 2.563 33.49 2.002 4.27

101 1,2,3-benzenetricarboxylic acid 2.88 3.582 24.38 2.771 −3.78

102 1,2,4-benzenetricarboxylic acid 2.52 2.79 10.71 2.375 −5.75

103 1,3,5-benzenetricarboxylic acid 2.12 2.971 40.14 2.34 10.38

104 benzilic acid 3.09 3.872 25.31 3.27 5.83

105 benzylamine-4-carboxylic acid 3.59 4.358 21.39 4.14 15.32

106 2-biphenylcarboxylic acid 3.46 3.194 −7.69 3.665 5.92

107 2-bromobezoic acid 2.85 3.896 36.70 2.918 2.39
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Table 3. Continued

No. Compound Exp. MLR IPDMLR ANN IPDANN

108 3-bromobezoic acid 3.810 3.065 −19.55 3.915 2.76

109 3-tert-butylbenzoic acid 4.199 5.079 20.96 4.418 5.22

110 4-tert-butylbenzoic acid 4.389 4.985 13.58 4.104 −6.49

111 2-chlorobenzoic acid 2.877 3.287 14.25 3.086 7.26

112 3-chlorobenzoic acid 3.83 3.319 −13.34 3.698 −3.45

113 2-chloro-4-nitrobenzoic acid 1.96 1.619 −17.40 1.868 −4.69

114 2-chloro-5-nitrobenzoic acid 2.17 1.654 −23.78 1.929 −11.11

115 2-chloro-6-nitrobenzoic acid 1.342 2.153 60.43 1.417 5.59

116 2-cyanobenzoic acid 3.14 2.809 −10.54 2.962 −5.67

117 3,5-diaminobenzoic acid 5.30 4.731 −10.74 5.225 −1.42

118 3,6-dichlorophthalic acid 1.46 3.287 125.14 1.271 −12.95

119 2,4-dihydroxybenzoic acid 3.29 3.956 20.24 3.639 10.61

120 2,5-dihydroxybenzoic acid 2.97 3.802 28.01 3.408 14.75

121 3,5-dihydroxybenzoic acid 4.04 3.911 −3.19 3.805 −5.82

122 2,6-dimethoxybenzoic acid 3.44 5.312 54.42 3.447 0.20

123 2,3-dimethylbenzoic acid 3.771 4.55 20.66 3.668 −2.73

124 2,4-dimethylbenzoic acid 4.217 4.499 6.69 4.019 −4.70

125 2,5-dimethylbenzoic acid 3.990 4.522 13.33 3.799 −4.79

126 3,5-dimethylbenzoic acid 4.302 4.467 3.84 4.189 −2.63

127 2,3-dimethylnaphthalene-1-carboxylic acid 3.33 4.439 33.30 3.532 6.07

128 2,3-dinitrobenzoic acid 1.85 2.331 26.00 2.258 22.05

129 2,4-dinitrobenzoic acid 1.43 0.688 −51.89 1.587 10.98

130 2,5-dinitrobenzoic acid 1.62 1.12 −30.86 1.905 17.59

131 3,5-dinitrobenzoic acid 2.85 1.127 −60.46 2.681 −5.93

132 2-ethylbenzoic acid 3.79 4.575 20.71 3.757 −0.87

133 4-ethylbenzoic acid 4.35 4.451 2.32 4.2 −3.45

134 2-fluorobenzoic acid 3.27 3.629 10.98 3.67 12.23

135 3-fluorobenzoic acid 3.865 3.586 −7.22 3.584 −7.27

136 3-hydroxybenzoic acid 4.076 3.993 −2.04 4.496 10.30

137 4-hydroxybenzoic acid 4.582 3.912 −14.62 4.627 0.98

138 2-hydroxy-5-bromobenzoic acid 2.61 3.096 18.62 2.722 4.29

139 2-hydroxy-5-chlorobenzoic acid 2.63 3.342 27.07 3.394 29.05

140 4-hydroxy-3-methoxybenzoic acid 4.355 3.803 −12.68 4.022 −7.65

141 2-hydroxy-5-methylbenzoic acid 4.08 4.275 4.78 3.365 −17.52

142 2-hydroxy-6-methylbenzoic acid 3.32 5.268 58.67 3.231 −2.68

143 2-hydroxy-3-nitrobenzoic acid 1.87 2.427 29.79 1.93 3.21

144 2-hydroxy-5-nitrobenzoic acid 2.12 2.435 14.86 2.059 −2.88

145 2-hydroxy-6-nitrobenzoic acid 2.24 2.774 23.84 2.723 21.56

146 4-iodobenzoic acid 4.00 2.59 −35.25 4.162 4.05

147 mesitylenic acid 4.32 4.467 3.40 4.189 −3.03

148 2-methoxybenzoic acid 4.09 4.146 1.37 3.963 −3.11

149 3-methoxybenzoic acid 4.08 4.006 −1.81 4.305 5.51

150 3-methylbenzoic acid 4.269 4.282 0.30 4.303 0.80

151 4-methylbenzoic acid 4.362 4.214 −3.39 4.541 4.10

152 2-methyl-3,5-dinitrobenzoic acid 2.97 1.552 −47.74 2.982 0.40

153 2-methyl-1-naphthoic acid 3.11 3.509 12.83 3.135 0.80

154 3-methylsulfonylbenzoic acid 3.52 3.113 −11.56 3.581 1.73

155 4-methylsulfonylbenzoic acid 3.64 3.062 −15.88 3.323 −8.71

156 1-naphthalenecarboxylic acid 3.695 3.68 −0.41 3.938 6.58

157 2-naphthalenecarboxylic acid 4.161 3.214 −22.76 3.693 −11.25

158 4-nitrobenzene-1,2-dicarboxylic acid 2.11 1.933 −8.39 1.917 −9.15

159 2-nitrobenzoic acid 2.18 2.444 12.11 2.429 11.42

160 3-nitrobenzoic acid 3.46 2.38 −31.21 3.196 −7.63

161 4-nitrobenzoic acid 4.441 2.295 −48.32 3.286 −26.01

162 o-phthalic acid 2.950 3.361 13.93 2.555 −13.39
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Table 3. Continued

No. Compound Exp. MLR IPDMLR ANN IPDANN

163 3-sulfamylbenzoic acid 3.54 3.209 −9.35 3.73 5.37

164 4-sulfamylbenzoic acid 3.47 3.159 −8.96 3.324 −4.21

165 2,3,5,6-tetramethylbenzoic acid 3.415 5.746 68.26 3.401 −0.41

166 2,4,6-tribromobenzoic acid 1.41 2.063 46.31 1.408 −0.14

167 3,4,5-trihydroxybenzoic acid 4.19 3.528 −15.80 3.824 −8.74

168 2,4,6-trimethylbenzoic acid 3.448 5.211 51.13 3.641 5.60

Validation set

169 2-bromophenol 8.452 8.691 2.83 8.673 2.61

170 2,4-di-tert-butylphenol 11.64 11.741 0.87 11.887 2.12

171 4-chloro-2,6-dinitrophenol 2.97 1.531 −48.45 2.959 −0.37

172 m-cresol 10.00 9.835 −1.65 10.017 0.17

173 1,3-dichloro-2,5-dihydroxybenzene 7.30 7.295 −0.07 7.066 −3.21

174 3,4-dichlorophenol 8.630 8.014 −7.14 8.343 −3.33

175 1,3-dihydroxybenzene 9.44 9.497 0.60 9.415 −0.26

176 2,4-dimethylphenol 10.58 10.069 −4.83 10.367 −2.01

177 2,6-dinitrophenol 3.713 2.105 −43.31 3.718 0.13

178 3-ethylphenol 10.07 10.127 0.57 10.217 1.46

179 4'-hydroxyacetophenone 8.05 8.846 9.89 8.155 1.30

180 4-hydroxybenzyl alcohol 9.82 9.53 −2.95 9.829 0.09

181 3-hydroxy-4-methoxybenzaldehyde 8.889 6.87 −22.71 8.744 −1.63

182 2-iodophenol 8.464 8.042 −4.99 8.505 0.48

183 3-methoxyphenol 9.652 9.475 −1.83 9.698 0.48

184 3-methylsulfonylphenol 9.33 8.579 −8.05 9.219 −1.19

185 3-nitrophenol 8.360 7.627 −8.77 8.185 −2.09

186 4-phenylphenol 9.55 8.554 −10.43 9.647 1.02

187 1,2,3-trihydroxybenzene 9.03 8.412 −6.84 8.938 −1.02

188 2-acetoxybenzoic acid 3.48 3.934 13.05 3.743 7.56

189 4-amino-2-naphthoic acid 2.89 3.547 22.73 3.028 4.78

190 1,2,3,4-benzenetetracarboxylic acid 2.05 3.004 46.54 2.064 0.68

191 benzoic acid 4.204 4.015 −4.50 4.297 2.21

192 4-bromobezoic acid 3.99 2.879 −27.84 4.057 1.68

193 4-chlorobenzoic acid 3.986 3.234 −18.87 3.88 −2.66

194 3-cyanobenzoic acid 3.60 2.725 −24.31 3.381 −6.08

195 3,4-dihydroxybenzoic acid 4.48 3.758 −16.12 4.153 −7.30

196 2,6-dimethylbenzoic acid 3.362 4.656 38.49 3.486 3.69

197 2,6-dinitrobenzoic acid 1.14 2.051 79.91 1.103 −3.25

198 4-fluorobenzoic acid 4.14 3.573 −13.70 3.854 −6.91

199 2-hydroxy-3-methylbenzoic acid 2.99 4.336 45.02 3.376 12.91

200 2-iodobenzoic acid 2.86 3.547 24.02 2.922 2.17

201 4-methoxybenzoic acid 4.49 3.91 −12.92 4.456 −0.76

202 2-methyl-4-nitrobenzoic acid 1.86 2.746 47.63 2.968 59.57

203 2-nitrobenzene-1,4-dicarboxylic acid 1.73 1.981 14.51 1.953 12.89

204 2-phenoxybenzoic acid 3.53 3.36 −4.82 3.758 6.46

205 2,4,6-trihydroxybenzoic acid 1.68 1.793 6.73 1.793 6.73

Prediction set

206 3-bromophenol 9.031 8.378 −7.23 9.17 1.54

207 2,6-di-tert-butylphenol 11.7 11.053 −5.53 11.895 1.67

208 4-chloro-3-methylphenol 9.549 9.111 −4.59 9.593 0.46

209 p-cresol 10.26 9.774 −4.74 10.216 −0.43

210 2,3-dichlorophenol 7.44 8.196 10.16 7.827 5.20

211 3,5-dichlorophenol 8.179 7.873 −3.74 8.198 0.23

212 1,4-dihydroxybenzene 9.91 9.613 −3.00 10.153 2.45

213 1,4-dihydroxy-2,3,5,6-tetramethylbenzene 11.25 10.3 −8.44 10.723 −4.68
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Table 3. Continued

No. Compound Exp. MLR IPDMLR ANN IPDANN

214 2,5-dimethylphenol 10.22 10.115 −1.03 10.31 0.88

215 3,4-dinitrophenol 5.424 7.121 31.29 5.319 −1.94

216 4-ethylphenol 10.0 10.064 0.64 10.293 2.93

217 2-hydroxybenzaldehyde 8.34 9.833 17.90 8.155 −2.22

218 4-hydroxybenzonitrile 7.95 7.911 −0.49 8.166 2.72

219 4-hydroxy-3-methoxybenzaldehyde 7.396 7.974 7.82 7.896 6.76

220 3-iodophenol 8.879 8.099 −8.78 8.921 0.47

221 4-methoxyphenol 10.20 9.587 −6.01 10.282 0.80

222 4-methylsulfonylphenol 7.83 7.936 1.35 7.647 −2.34

223 4-nitrophenol 7.150 7.232 1.15 7.219 0.97

224 3-phenylphenol 9.63 8.485 −11.89 9.671 0.43

225 1,3,5-trihydroxybenzene 8.45 8.929 5.67 8.107 −4.06

226 3-acetoxybenzoic acid 4.00 3.47 −13.25 3.822 −4.45

227 anthracene-2-carboxylic acid 4.18 2.148 −48.61 4.186 0.14

228 1,2,3,5-benzenetetracarboxylic acid 2.38 1.625 −31.72 2.379 −0.04

229 2-benzoylbenzoic acid 3.54 3.223 −8.95 3.185 −10.03

230 2-bromo-6-nitrobenzoic acid 1.37 2.004 46.28 0.957 −30.15

231 2-chloro-3-nitrobenzoic acid 2.02 2.266 12.18 2.536 25.54

232 4-cyanobenzoic acid 3.55 2.619 −26.23 3.873 9.10

233 2,6-dihydroxybenzoic acid 1.30 2.864 120.31 1.084 −16.62

234 3,4-dimethylbenzoic acid 4.41 4.471 1.38 4.255 −3.51

235 3,4-dinitrobenzoic acid 2.82 2.251 −20.18 2.738 −2.91

236 2-hydroxybenzoic acid 2.98 4.091 37.28 3.313 11.17

237 2-hydroxy-4-methylbenzoic acid 3.17 4.308 35.90 3.128 −1.32

238 3-iodobenzoic acid 3.86 2.771 −28.21 3.529 −8.58

239 2-methylbenzoic acid 3.90 4.357 11.72 3.749 −3.87

240 2-methyl-6-nitrobenzoic acid 1.87 4.44 137.43 1.939 3.69

241 3-nitrobenzene-1,2-dicarboxylic acid 1.88 2.334 24.15 1.872 −0.43

242 4-phenoxybenzoic acid 4.52 3.194 −29.34 3.993 −11.66

aExp. refers to the experimental values of pKa, MLR and ANN refer to multi-parameter linear regression and artificial neural network calculated values
of pKa, respectively.

Figure 4. Plot of the calculated values of pKa from the ANN model
versus the experimental values of it for training, validation and
prediction sets.

Figure 5. Plot of the residual for calculated values of pKa from the
ANN model versus the experimental values of it for prediction set.
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Conclusions

A linear and non-linear QSPR models have been develop-

ed for prediction of acidity constant (pKa) for various

benzoic acids and phenols in water. Comparison of the

values of RMSE for training, validation and prediction sets

(and other statistical parameters in Table 4) for the MLR and

ANN models show superiority of the nonlinear model over

the regression model. Root-mean square error of 0.9388 for

the prediction set by the MLR model should be compared

with the value of 0.25751 for the ANN model. Since the

improvement of the results obtained using nonlinear model

(ANN) is considerable, it can be concluded that the

nonlinear characteristics of the molecular descriptors on the

pKa values of the compounds in water is serious. 

Acknowledgements. The Authors wish to acknowledge

the vice-presidency of research, university of Mohaghegh

Ardebili, for financial support of this work.

References

  1. Katritzky, A. R.; Karelson, M.; Lobanov, V. S. Pure Appl. Chem.
1997, 69, 245.

  2. Balaban, A. T. J. Chem. Inf. Comut. Sci. 1997, 37, 645. 

  3. Benfenati, E.; Gini, G. Toxicology 1997, 119, 213.
  4. Cronce, D. T.; Famini, G. R.; Soto, J. A. D.; Wilson, L. Y. J.

Chem. Soc., Perkin Trans. 2 1998, 1293.

  5. Engberts, J. B. F. N.; Famini, G. R.; Perjessy, A.; Wilson, L. Y. J.
Phys. Org. Chem. 1998, 11, 261.

  6. Hiob, R.; Karelson, M. J. Chem. Inf. Comut. Sci. 2000, 40,

1062.
  7. Habibi-Yangjeh, A. Indian J. Chem. 2003, 42B, 1478. 

  8. Habibi-Yangjeh, A. Indian J. Chem. 2004, 43B, 1504.

  9. Nikolic, S.; Milicevic, A.; Trinajstic, N.; Juric, A. Molecules
2004, 9, 1208.

10. Devillers, J. SAR and QSAR Environ. Res. 2004, 15, 501. 

11. Karelson, M.; Lobanov, V. S. Chem. Rev. 1996, 96, 1027.
12. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors;

Wiley-VCH: Weinheim, Germany, 2000.

13. Kramer, R. Chemometric Techniques for Quantitative Analysis;
Marcel Dekker: New York, 1998.

14. Wold, S.; Sjöström, M. Chemom. Intell. Lab. Syst. 1998, 44, 3.

15. Barros, A. S.; Rutledge, D. N. Chemomet. Intell. Lab. Syst. 1998,
40, 65.

16. Garkani-Nejad, Z.; Karlovits, M.; Demuth, W.; Stimpfl, T.;

Vycudilik, W.; Jalali-Heravi, M.; Varmuza, K. J. Chromatogr. A
2004, 1028, 287.

17. Patterson, D. W. Artificial Neural Networks: Theory and

Applications; Simon and Schuster: New York, 1996;  Part III,
Ch. 6.

18. Bose, N. K.; Liang, P. Neural Network Fundamentals; McGraw-

Hill: New York, 1996.

19. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug

Design; Wiley-VCH: Weinhein, 1999.

20. Agatonovic-Kustrin, S.; Beresford, R. J. Pharm. Biomed. Anal.
2000, 22, 717.

21. Fatemi, M. H. J. Chromatogr. A 2002, 955, 273.

22. Xing, W. L.; He, X. W. Anal. Chim. Acta 1997, 349, 283.
23. Bunz, A. P.; Braun, B.; Janowsky, R. Fluid Phase Equilib. 1999,

158, 367. 

24. Homer, J.; Generalis, S. C.; Robson, J. H. Phys. Chem. Chem.
Phys. 1999, 1, 4075.

25. Goll, E. S.; Jurs, P. C. J. Chem. Inf. Comp. Sci. 1999, 39, 974.

26. Vendrame, R.; Braga, R. S.; Takahata, Y.; Galvao, D. S. J. Chem.
Inf. Comput. Sci. 1999, 39, 1094.

27. Gaspelin, M.; Tusar, L.; Smid-Korbar, J.; Zupan, J.; Kristl, J. Int.

J. Pharm. 2000, 196, 37.
28. Gini, G.; Cracium, M. V.; Konig, C.; Benfenati, E. J. Chem. Inf.

Comput. Sci. 2004, 44, 1897.

29. Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K.; Sekiya, A. J.

Fluorine Chem. 2002, 116, 163.
30. Koziol, J. Internet Electron J. Mol. Des. 2003, 2, 315.

31. Wegner, J. K.; Zell, A. J. Chem. Inf. Comput. Sci. 2003, 43, 1077.

32. Valkova, I.; Vracko, M.; Basak, S. C. Anal. Chim. Acta 2004, 509,
179. 

33. Sebastiao, R. C. O.; Braga, J. P.; Yoshida, M. I. Thermochimica

Acta 2004, 412, 107. 
34. Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson.

2004, 171, 176. 

35. Habibi-Yangjeh, A.; Nooshyar, M. Bull. Korean Chem. Soc. 2005,
26, 139.

36. Habibi-Yangjeh, A.; Nooshyar, M. Physics and Chemistry of

Liquids 2005, 43, 239.
37. Selassie, C. D.; DeSoyza, T. V.; Rosario, M.; Gao, H.; Hansch, C.

Chemico-Biological Interaction 1998, 113, 175.

38. Zhao, Y.-H.; Yuan, L.-H.; Wang, L.-S. Bull. Environ. Contam.
Toxicol. 1996, 57, 242.

39. Hemmateenejad, B.; Sharghi, H.; Akhond, M.; Shamsipur, M. J.

Solution Chem. 2003, 32, 215.
40. Gruber, C.; Buss, V. Chemosphere 1989, 19, 1595.

41. Citra, M. J. Chemosphere 1999, 38, 191.

42. Schuurmann, G. Quant. Struct. Act. Relat. 1996, 15, 121.
43. Gross, K. C.; Seybold, P. G. Int. J. Quant. Chem. 2001, 85, 569.

44. Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields,

G. C. J. Am. Chem. Soc. 2002, 124, 6421.
45. Hanai, T.; Koizumi, K.; Kinoshita, T. J. Liq. Chromatogr. Relat.

Technol. 2000, 23, 363.

46. Ma, Y.; Gross, K. C.; Hollingsworth, C. A.; Seybold, P. G.;
Murray, J. S. J. Mol. Model 2004, 10, 235.

47. HyperChem, Release 7.0 for Windows, Molecular Modeling

System; Hypercube Inc.: 2002.
48. Todeschini, R.; Consonni, V.; Pavan, M. Dragon Software,

Version 2.1; 2002.

49. Dean, J. A. Lange’s Handbook of Chemistry, 15th Ed.; McGraw-
Hill, Inc.: 1999. 

50. Demuth, H.; Beale, M. Neural Network Toolbox; Mathworks:

Natick, MA, 2000.
51. Despagne, F.; Massart, D. L. Analyst 1998, 123, 157R.

52. Matlab 6.5; Mathworks: 1984-2002. 

53. Famini, G. R.; Wilson, L. Y. J. Phys. Org. Chem. 1999, 12, 645. 

Table 4. Comparsion of statistical parameters obtained by the MLR and ANN models for correlation  acidity constant of phenols and
benzoic acids with the molecular descriptorsa 

Model R
2
tot R

2
train R

2
valid R

2
pred RMSEtot RMSEtrain RMSEvalid RMSEpred

MLR 0.9266 0.9268 0.9400 0.9147 0.8610 0.8553 0.8034 0.9388

ANN 0.9931 0.9926 0.9943 0.9939 0.2648 0.2700 0.2479 0.2575

aSubscript train is referring to the training set, valid is referring to the validation set and pred is referring to the prediction set, tot is refering to the total
data set and R is the correlation coefficient.


