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The multichannel quantum defect theory (MQDT) is reformulated into the form of the configuration mixing
(CM) method using the geometrical construction of3tmeatrix developed for the system involving two open

and one closed channels. The reformulation is done by the phase renormalization method of Giusti-Suzor and
Fano. The rather unconventional short-range reactance riatiftose diagonal elements are not zero is
obtained though the Lu-Fano plot becomes symmetrical. The reformulation of MQDT yields the partial cross
section formulas analogous to Fano's resonance formula, which has not easily been available in other's work.
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Introduction properties are easily studied in the new representation.
The generalizations of their method to the general system
| recently made a geometrical construction ofS$heatrix involving arbitrary numbers of open and closed channels
for the system involving two continua and one discrete'tate were done by Cooke and Cromiérecomte’ Ueda® Giusti-
in the context of the configuration-mixing (CM) method of Suzor and Lefebvre-Brioh,Wintgen and Fridrich? and
Fano® In this paper, | will apply this newly developed Cohen'! All the generalizations utilize the simplifications
geometrical method to the reformulation of the multichanneland the transparent resonance structures in the formulations
quantum defect theory (MQDT)nto the form of the CM  derived from the zeros of diagonal blocks of the short-range
one for the system involving two open and one closed channelgeactance matrices. Only total cross section formulas for
The configuration-mixing method and the multichannel quantunphotoionization processes have been dealt in their work.
defect theory are two widely used resonance theories andIn this paper, we will adopt a different approach in which
have their own advantages and disadvantages. The configue seek the MQDT formulation identical to the one of the
ration-mixing method assumes the presence of discrete stat€1 theory by comparing their physical scattering matrices.
from the outset, which has an advantage of treating the bacRransforming theS matrix of the MQDT formulation into
ground and resonance contributions directly but making ithe form of the CM theory can be done with the phase renor-
impossible to treat the whole spectrum including bound statesalization by Giusti-Suzor and Fano without the need of
and continua in a unified manner. Multichannel quantumutilizing the more powerful transformation considered by
defect theory overcomes this limitation by not explicitly Lecomte and Ued4 Dealing the effects of the phase renor-
assuming the presence of discrete states. However, asalization orS or equivalently on the phase shift matfi&
resonances are handled indirectly, it is not obvious how talefined byS=exp (2i4) is not a simple task for systems
identify the resonance terms from the background ones or tmvolving more than two channels since eigenchannels for
show the resonance structures transparently in formulas fadhe phase renormalization and the onesSar A are of
observables. Therefore, it is worth reformulating MQDT sodifferent characters. If only two open channels are involved,
that it has all the traits of both theories. it can be studied with the geometrical method developed in
The first piece of work on this line was done by Giusti- Ref. [1, 2]. By making use of the phase renormalization and
Suzor and Faridor a two channel system. They noticed thatthe geometrical method together, we will find in this paper
the usual Lu-Fano plot often obscures the symmetry of théhe representation in which MQDT gives the identical form
plot. If the origin of the plot is moved to its center of of scattering matrix with the CM one and thus we will
symmetry by the use of the phase-shifted base pair as eventually relate the elements of the short-range reactance
(f.g) - (fcosmu—gsinmu, gcosmu+fsinmy), (1) matrix K to thg geometrical parametgrs of the CM theory.

' ' ' The reformulation will allow us to obtain the simple formula
the diagonal elements of a short-range reactance niatrix for the time delay due to the presence of closed channels and
become zero so that there remains only the coupling strengthe partial cross section formulas analogous to Fano's
between open and closed channels. In this way, resonancesonance formula which has not easily been available in
structures are separated from background ones and thaither's work.

Section 2 briefly describes the multichannel quantum defect
*Electronic address: clee@madang.ajou.ac.kr theory. Then the phase renormalization is described in Section
'address during the sabbatical leave (March 2000-February 2008) Section 4 summarizes the construction of3tmeatrix by
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the geometrical method in the CM theory. Reformulation ofwhereP andQ denote the sets of open and closed channels,
the MQDT formulation into the one of the CM theory is respectively,d, are the eigenphase shifts for tkematrix
considered in Section 5. Section 6 considers the contributiowhich will be defined later in Eg. (13), an is the

of the closed channels and Section 7 derives the partiglccumulated phase shift in thh closed channel defined in
photofragmentation cross section formulas. Finally, theRef. [14]. The factor ca@ is introduced in two respects: to

summary and discussion are given in Section 8. makeZ, (i 0 P ) orthonormal and to normali2g in energy.
The factor co8 plays the similar role. Substituting the
The Brief Introduction of the Multichannel asymptotic forms of the regular and irregular base pair for
Quantum Defect Theory the open channels given by
In the multichannel quantum defect theory, the fragmenta- £(R) - \/@sin(k-R+ )
tion coordinateR is divided into two regionR < Ry, andR > : Tk ! e

Ro, the inner and outer regions, respectively. In the inner
region, transfers in energy, momentum, angular momentum, 2m;

spin, or the formation of a transient complex occur due to the G(R) - —\/:icos(kiR ), ()
presence of the strong interaction between the colliding

partners there. In the outer region, channels are decouplethd for the closed channels giverity

and the motion of a system is governed by the ordinary
second-order differential equations and described by the
superposition of the regular and irregular solutions for each
channel, say(R) andg(R) , for thej-th channel. For thil-
channel system, thil independent solutions in the outer
region can be taken as

W(R o) = JZ‘DJ(W) [i(R&i-g RK;l. (j=1..N) (2

gi(R) - —A/%(COSBiDi_leKiR"' SinBiDie_KiR)' (6)

into Eq. (2) and setting the coefficient of the exponentially

whereR is the coordinate for the relative motion of colliding rising term in Eq. (4) to zero, we get

partners andb;(«) are the channel basis functions for the _
remaining coordinate space (notice tHatare not ortho- iDZQ (K +tanf; 6;) Zi,cosf + mzp KjiZin€0s5, = 0,
gonal functions but used more widely than the orthonormal (0Q) 7
ones$?). The correspondinly independent solutions describ- J '
ing the motion in the inner region are described by Parametersn, hk , andn; in Eq. (5) denote the reduced
. _ . ) mass for the relative motion of photofragments aléng
WR @)= JZq)J(w) xR, (3) when the core is in thieth channel state, the momentum,

. . . . and the phase shifted in that relative motion, respectively.
where the radial functions are obtained by solving, for examplerhe parameteis; in Eq. (6) is the analytical continuation of

plose coupleq.equatlons starting from the origin. By |mposK in closed channels. For the definition @f in the same
ing the condition that the values of the wavefunctions are : .

. - : equation, see Ref. [14]. From the asymptotic foripf
zero in the origin, solutions are ensured to be the regular

ones. The wavefunctions (2) in the outer region are then m
determined by the continuous conditions ¥{R, «) and W,- > /—'¢jijsin(KjR+ n;+9,), (8)
their first derivatives at the matching radRgs The base pair iop j

fi(R) and g(R) can be given by analytic formulas for the
: . : we have

long-range potentials like Coulomb or dipole ones. But for
the zero field, the pair can only be obtained numerically, for Zip = Tipy
example, by the Milne method proposed in Ref. [14]. _

Though motions are decoupled in the outer region, closed igp (Kji —1an0,3;)Z;,c080, + i DZQ KjiZipCosh; = 0,
channels are still effective and remained in the summation of (0P). (9)
Eq. (2). But in the asymptotic region, the system can no '
longer stay in the closed channels and the contribution of thEgs. (7) and (9) have a nontrivial solution only when the
exponentially rising term should be zero. The number ofequation
independent solutions which remain finite in the whole space
will be equal to the number of open channels. Let us denote
the independent solutions ¥ . They can be expressed into
the linear combinations of th¢ independent standing wave K
solutions (2) as

W, = _z l4JiZipcosc$p + _Z l4JiZipcosBi, 4)
ioP ioQ

oc

K*-tans, K
K + tang

=0 (10)

co

is satisfied. The formulas fo‘ficp are obtained from Eg. (7)
as
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used in Eq. (2). The pair of functions obtained by shifting

phases in a basis pair defined in the outer region can still be
used as a basis pair in the same region. The phase
where super-indices are added to indicate to which of operenormalization may be regarded as being caused by the
and closed channels the row and column indices oKthe change of potential in the inner region. The potential used as
matrix andZ belong. Substituting Eq. (11) fdrfp and after a reference in the inner region to define the basis pair in the
some manipulations, Eqg. (9) can be written into anouter region is considered by Mies and named as the

zicosp=— 3 (K“+ tanﬁ)ﬁlchkoTkpcosdp, (11)
joQ.kOP

eigenvalue equation fdf : reference potentidf. If the potential is not taken zero in the
inner region, the base pair contains the contributions from
> K;i Ti ,€089, = tand, T; ,c0sd,, (12) the short-range potentials and the long- and short-range
iop contributions are no longer treated separately in the MQDT

formulation. But still the long-range contributions are absent

where thek matrix denotes in the short-rangk matrix. The change in reference potentials

— /00 ,0C/ cC -1 co brings about the changes in the phase shjftand f3,
K=KT-KH(K™+tanf) K™ (13) " Gefined in Egs. (5) and (6), by as
The asymptotic fornt¥, is obtained asy | J. ap @i(fi O —
g Ki))Tip cosd,, showing thaK is the reactance matrix in the nj = n, +my for jOP,

asymptotic region.
In the multichannel quantum defect theory, the complex

resonance spectra occurring in the photofragmentation anv(\j/here the tilde is used to denote new phase shifts. The

collision processes are explained in terms of only a fev‘fransformations (15) of phase shifts correspond to the
parameters, the energy-insensitive short-radgeatrix, or transformations of the base pairs as

its eigenphase shifts and eigenvectagsand Ui, and the
long-range quantum defect parameters and 3. The
complicated behaviors of the spectra are brought about by
the boundary conditions in the asymptotic region. These g; = f; sinmy; + g;cosmy;, (16)
spectra are described by the incoming wavefunctlﬂff%

(j=1, ... No) whose forms in the asymptotic region are and of theN independent standing wavefunctions as
given by

B =B+my for jOQ, (15)

fj =1, cosmy, - g;sinmy,,

5 Wi =2 o(fidi —giK;),
501 Mo ve .- j
w —oi(f{ 5 -1;'Sy) (14)

i T oo _ ~ . o~
21 Op nkJ LIJiZZ ¢j(fj5Ji—ngji), (17)
i
and can be obtained by the linear combination of the
fragmentation eigenchannel,. In Eqg. (14),f* denote  The K matrices and standing wavefunctions are similarly

exp(Hkir). transformed as
The Phase Renormalization K = (Ksinmu + cosny)_l(Kcosny—sinnp), (18)
W = W(cosmy — sinmuK), (19)

Intra- and inter-channel couplings are usually entangled in
solutions of Egs. (7) and (9), or equivalently, of the secularespectively. Transformation between fragmentation eigen-
equation (10), which makes the identification of the resonchanneld¥, and Ut the asymptotic region defined by
ance structures in the solutions difficult. Giusti-Suzor and
Fang used the transformation, called the phase renormali- W,= > @T,,(ficosd,—g;sind,),
zation, originally considered by Eissner and Sééttm the jop
different purpose, to separate out an inter-channel coupling ~ O L V"
from the intra-ones by making the diagonal elements of the Wo = j sz ;T p(f,C080p — §jSinG,) (20)
reactance matriX zero and thus were able to identify the
resonance structures clearly. Their work was extended bwill not be considered as it is irrelevant to the present work.
Cooke and Cromér,Lecomte’ Ueda® Giusti-Suzor and Finally, let us consider the transformation relations bet-
Lefebvre-Brion® Wintgen and Fridrich® and Coheit  weenS and Smatrices. For this purpose, it is convenient to
Though their work, especially the one by Lecomte and Uedajefine a little different incoming wavefunctioW(n)j(_)
is essential in investigating full resonance structures in thevhose asymptotic form is given by
MQDT formulation, the phase renormalization is enough for
the purpose of the present woile., of reformulating the - 1
MQDT into the form of the CM theory. Phase renormali- Wi © - Z_iEP @ % = S(m);)
zation utilizes the freedom we have in defining basis pairs (22)

%(ei(kiR‘Lni) - (KR+n;)
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instead of the usualJJ( ) whose asymptotic form |s glvenS(O) is calculated from Eq. (24) by substituting Eq. (29) for

by Eq. (14). The usua“J can be written \11%0)1( S(n) and the expression for exjpf)) similar to that for exp
in this definition andS as S0). If we conS|derLIJ(l7)J (-2id) as
corresponding to a new reference potential, its asymptotic
form will be given by S(0) = e (3 M) 2 O |A50Ehel——q0
. . —i(0;+n5) —indoh' —iAno,
() 2m;, ik, R+n) —i(kR+ ) o =e e e , 30
w(mi -5 Ly o '( j—e S(Mij) (30)
e WherenLdenotes’Rz(An)n. In the same wayy(0) is obtained
Z o, 2m,( R lkR _iF]iS(ﬁ)ije—iﬁj)eif]j fromS(n) as
2'|DP (22) i(3 + 1) —iASGTR' AR
_ S(0) = e+ g 1800 ginio, (31)
= w(0) e (23) i
wherefi’ denoteR,(A# )f with A given byR/(8)z with
Eq. (22) yields the transformation relations among varioughe mixing angle@ defined~aE = exp@o,/2). Let us
scattering matrices rewrite the relations betweem, andn; in Eq. (15) as the
N - din din relations between their respective sums and differences as
S(0); =e "s(f)je " =e 'S(n)e ", (24)
_ . . n, ="M+ s,
and the corresponding ones for these incoming wavefunc- AR - An+ M. (32)

tions from Eq. ( 23) as

LP(O)( ) _ ‘4’('7)1 el qJ(n)j(_)e_inj. (25) Equating two equations (30) and (31), we obtain

. o1& ) Hibsa ' Hidng, _ (8 + 1Tx) giAda i i,
If we restrict the number of open channels to two, the (33)
simplicity of SU(2) algebra allows us to deal with the
transformation relations among various phase shift matricesjaking the trace of both sides of the above matrix equation
the generators of scattering matrices, instead of scatteringelds
matrices as a whole as will be seen in the next subsection. .

A. The transformation of the S matrix by the phase Os + Ny =05 + Ns, (34)
renormalization in the two open channel system

Kin Eq. (13) is defined in terms of the submatrices of thewhich shows that the sum of the eigenphase shifts are
short-rangeK matrix which, in turn, is defined with respect invariant under the change of the reference potentials. From
to the basis pairff, g in Egq. (17), indicating that it Eg. (34), &s is related td;, as
corresponds td(n). It shares the eigenvectors wii).

From Eq. (12), the latter can be expressed as s = 5, — il (35)
S(my =3 Tipe - T(T)- (26)  The remaining anisotropic part becomes
griddom’ — e—lAGo’[ﬁ —i muo (36)

If we restrict the number of open channels to two, The
matrix can be parametrized with one mixing angle, 8ay With olh' 0o [R{mAn)n] = expEimino/2)oh exp
by (im\no42) andAn =An + m\u, Eqg. (36) can be rewritten
0 i i
T=e'3%. 27) after some manipulations as

. . : " A i
For two open channel systems, the diagonal matrix exp giboom” = gribdothig™ WZ, (37)

(=2i9) can be expressed in terms of the Pauli matrices as wheren”  represenBy(-mn. Eq. (36) or (37) tells us

that the new phase shift differens@, which is caused by

o 20 = Ee—zm 0 E_ e—i(6zl+A6cfz) 28) the anisotropic influence of the reference potentials in two
E 0 g?2o E_ ' eigenchannels, cannot be obtained as a simple translation of

the oldAd by m\u as in Eq. (35) for the eigenphase sum.
This derives from the fact that the eigenchannelsS{qj
and the ones for exp\u) are of different character. The
o combining rule ofAd and Au for Ad can be obtained at
o -indo, i20, _ _ig first by expressing Eq. (37) into the spherical triangle shown
S(nm) = e 2 e e =elte oo, (29) in Figure 1 following the rule described in Ref. [2]. Then,
wheren is defined aRR(6)z and equal t@cosd + x sinb. from the laws of spherical trigonometry, the formulas for the

Substituting Egs. (27) and (28) for T and exvf),
respectively, Eq. (26) becomes
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- ) 2T, *
z 4 (M) = w7 Omy 0= FVeVie.  (@D)

P Alvl With Eg. (41) and cob = -2(E-Eo)/T", Eq. (39) becomes in
matrix form as

6

S=5+ 2% -1)SM, =1 + (2% - 1) ] = SLe @2,
T—-Ad o

Let us restrict the number of open channels to two. Let the
backgroundS® matrix in Eq. (39) be diagonalized by the
similarity transformation a8° = U °® e2%°(U 9™ whereU° is
a real orthogonal matrix as the unitaBf matrix is

-x symmetric. TheS” matrix may be expressed in terms of
Pauli matrices as

g

- -

O O
0 ot e-zm‘j 0 O 0,(M
S =U0D0 Qu”)

0 o e2%0

Figure 1. The diagram showing the relation betwelhand its D D
transformedAd due the change of reference potentials. _ e_ég‘]UYe_i(521+A2202)ei§900y e_i(521+A‘1]20m0) (43)
newAd and @in terms of the old ones are obtained as wheren, =R/(6)z, 5‘; = 62 + 62 , andA?2 = 62— 62 . If we
. denote themrth eigenchannels o8 as ¢, U;,, may be
COAJ = coDS cogAU + SINAS SINTAL cOP, considered as the transformation matrix frgf?  yte

. 1 The interaction matriceglf, |H | ¢) are real and can always
cotd = Sind (co® cosmAu — sinTAu cotAd).  (38) be taken to be positive by choosing appropriately the sign of
sin Ym at the origin. Letdm |H | @) = /T /2. Notice thaf ;

Geometrical Description of theS matrix for the +T2is equal to the previously definédThen, we have

System with two Continua and One Discrete State 0\(T) —2i8M, o _ -i(31+3am,)
in the CM Theory (U) e U-=e : (44)
wheren, is defined by
The form of theS matrix in the neighborhood of an

isolated resonance in multichannel processes is well-known n, = RZ(—Agz)Ry(G,)z
and has been repeatedly derived in the past using various o 0 . .0
resonance theoriéd.For the system composed of one dis- = (sin,cosA;, —sing sind,,, cosd,) (45)
crete statgp and many continuum Wavefunctiordé_) B)( with
the S matrix defined by Eq. (14) may be obtaikeals

_rl_rz
) cosb, = o
O VeV
Sy= Y S +2m LE B (39) g = 2N ”
jop O E-Ey—imZ Ve T sinG, = ——F——. (46)

Ref. [1] obtained
where Vi denotes(wj(_)(E)|H|q0) anchO,j,. is the back- Ao Lisel.  isem
ground scattering matrix. Eq. (39) is different from that of e e T 'Tz=e % 47)
outgoing wave in thatis replaced byi and adopted here as

our interests are in the photodissociation processes. 2 wheren, andd, are defined by

| Vie | 2 is the spectral width of the resonance peak and will N, =R/(8,)z, (48)
be denoted a§. Eq. (39) can be greatly simplified by £.—q
introducing Fano's ‘a’ statgf®(E), defined as cotd, = —cotA),—2—2, (49)
A/si +1
(a) _ 2m )
W (B)= 4/? JZ"’UJ' Vie, (40) respectively, witrqa=—cot9r/cosA22 and
. 0
and the projection operat®t, = [¢0mW™®| whose i( j) - _SInAp 0
element is given by £a = —CO0, = sing, (& = COtA;,COS0,). (50)
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With Eq. (47), theS matrix becomes As is well known cité®!° the behavior of the eigenphase
_ _ _ _ . sumds(=4: + &) should be simpler than those of individual
S= e_'(ég)rCS’)UOe_'éi"cI I:hf"(UO)(T) = e_'(ég)ré’)e_'éacj s eigenphase shifts. Let us consider the tangent functions of

(51) the sum and difference of eigenphase shifts:

WhereT ng =R/(6)N, . In Ref. [2], all the .proce.dures K KStrK - tr(K°°K) + trk°%ang
described so far are shown to be neatly fitted into the tand; = 1K - pvs S ,
construction of the spherical triangle shown in Figure 2. - K~ |K| + (1-|K°T)tans

(59)

The Solution of MQDT for the System with tanAS = /D (60)
two Open and One Closed Channels T1+ K|

Let us now consider obtaining the solution of the com—The eigenphase subg of Eq. (59). does not show the Wp'c?'
atibility equation (10) for the system involving two open resonance structgre. By changing the reference pqtentlals,
b we want it to be given as the form t&q = &/tanf , which

and one closed channels, where the compatibility equation S ows the typical resonance behavior as described in

reduced to Appendix A. The corresponding equation to Eq. (59) for the
new reference potential becomes this form when its
Ki—tand Ky, Kis elements satisfy
K, Kyp-tand K,z |=0 (52) ~ 00 = %
trk =0, K =|K|. 61
Kis Koz KggttanB (61)
and can be written as a quadratic equation fa¥ é&n In this case,
5o 2,
(tanB + K*)tan’5 - (tanB + K*)trKtand tano; = —¢/tang, (62)
+|K°Ytang + K| = 0. (53)  whereéis defined by
Eq. (13) becomes for this three-channel system as 62 - tr(k“k“; (63)
oc,,co 1 - ‘Roo‘
K=k?- KK _ (54) ~00
tang + K°° FromtrK " =0, we have
and its trace and determinant are obtained as IZH = —IZZQ,
~ 00| ~ 2 ~ 2
2 2 K™ =—(|Ky| + K <0 64
e oo Kt K KT = ~(Raal” + K2 (64)
tang + K* and the square dfbecomes
tan§|K00| + K] ~2 ~2
= +
K tanB+ K (59) &= KistKos_, 0, (65)

1+ Ril*’ Riz

Substituting I_Eq. (55) for the corresponding terms in Eq.Where its positive-ness is shown explicitly.
(53), we obtain

A. The Extraction of CM Parameters from MQDT
Formulas. . .

As explained in Appendix A, ifds satisfies tan =
-&JtanB , it shows the identical behavior with the resonance
eigenphase shifi and may be regarded as identicadto

tar’ 5 —trKtans + K| = 0. (56)

The two solutions denoted as famand tad are obtained
with the discriminanD [= (trK)? - 4|K |] as

0s=9. (66)
tanaiz”K%ﬁ, (57) '
For convenience, let us call the reference potential in which
whereby Os satisfies Eq. (62) the resonance-centered reference
potential and the representation the resonance-centered
tand, - tand_ = /D, representation. Let us now examine how other CM

parameters are assigned to the elements okthe  matrix in
the resonance-centered representation as the result of the
tand, [tand_ = |K|. (58) assignment ob, to ds . For this purpose, let us utilize the

tand, + tand_ = trK,
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equality ofS(0) given by (51) in the CM theory and given by ~oc~co, 2
Eq. (31) in MQDT: +[tr(KTK)] . (76)
(R+8) 6o (st h) Liabdh ~ibia, Using the relation
e e —e e e (67) - od. 2
The above matrix equation holds when isotropic and aniso- l_llj 0‘ ||Z|2 + [tr(k“k“)]z
tropic parts of both sides are equal, respectively, as can be ‘K 0‘

easily seen by equating the traces of its left- and right-hand 1 ~2  ~2 .~ ~ o~ o~ 2
Sideg' y equaing g =- R [(Kis— K23)Ki2 — 2K11K13K 23] (77)
: K ‘
&+ 6, =5 + 115, (68) it becomes
—-id.o ! _inSg O —iARC ~ 00|
a a — Z' D ~ ZD ~ =+ ~ DZ
e e e (69) D=_ ~:t D4‘Koo‘ Hang + 1 llﬁo ‘| &
Because of the equality (66), Eq. (68) yields ‘K O‘D O Z‘K ‘ O
" iy mp o~ -~ o~ 20
5(; =1s. (70) + [(Kis— KgS)KlZ_ZKllKlSKZS] E

Since the left-hand side of Eg. (69) has two parameters, [(IZZ _K2 )IZ — 2RaaKaaK ]2
6, for ny and &, while the right-hand side has three — ==t 2 a2 —olinidas
parameter&d, A1, and &for A’ there will be an infinite K11+ K1

number of ways of making both sides equal. The simplest of 4(I22 + K2 )2

all will be the one that makes one of two exponential X{ —
matrices on the left-hand side a unit matrix, which can be [(Kiz—K23)K2 — 2K 11K 13K 23]
achieved here by setting

O ~ 1+ ‘Roo‘ . DZ
n = XEtanB"‘~—|K|D+l
Al =0. (71) 0 Z‘Koo‘ 0
In this setting,i” - which is defined R(Aﬁ)ﬁ becomes - [(kiS_RgS)RlZ—ZRMRlSRZS]Z(SZ_'_ 1) (78)
equal tofi . The right hand side of Eq. (69) is now simplified ~2 ~2 a )
as K11+ Ky
Sisem ke whereg, is given by
e T TEe (72) 2 oo
E. . =- 2(K11+ Klg)
a ~ ~ ~ ~ ~ ~
Eqg. (72) holds when (Kis— Kgg) T
n, =, (73) 0 . R
5 x danB - O
o, = A0. (74) EEEE)
: O 2(K11+ K1) U

Since vectorsn; andi are obtained from the axis by

~2 ~2 ~2 ~2
rotating about they axis by 6, and6 , respectively, the = 2(K11* Ki2) (Kis * Kag)

equality of two vectors is produced whélj 6= . If we [(Kis— R§3)K12_2|211|213|223](1 + K11 +KD)
recall that a projection operator of type (b€h )2 g2 22 2 Y
generates an eigenchannel@fh , Eg. (73) indicates that X {s,— 1 E“ ElZ(KlS K232|2<11 thlZKlSKﬂ
both S(0) andS(7 ) have the identical eigenchannels. 2(K11 + K1) K1z + Kas

From Eq. (60), tahid is given in terms of the elements of (79)

the K matrix asyD/(1 + |K|) and singed is equal tos,
from Eq. (74), we should be able to wrig®/(1 +|K|) into
the form in Eq. (49). In order to do this, let us start from
rewriting the discriminand  using Eq. (55) as

In Egs. (78) and (79), and ¢ are used as convenient
notations for—cotg, and —cotd, respectively. In the CM
theory, they are reduced energy parameters and can vary
from — to « only once while in MQDT they undergo such
a variation repeatedly every tintg or & increase byt By
giving up the meanings af ande; as energies and replacing
them with —cotf, and —cotd,, respectively, the same CM
(75) .

N I formulas for an isolated resonance can be used for all
Let D denoteD (tang + |K|) . D may be rewritten as resonances belonging to the same threshold by extending the
o - g2 ranges oB, andd, from [0, 7 to [-oo, ]. Then each interval
_ ~oo U~ 1+ ‘K 0‘ ) gl—‘K 0‘) ~12 [(n—=1)71z nm] corresponds to one resonance. Equating Egs.
D =- 4k°] gang+ = |k|g + &=L K| -
0 Z‘Koo‘ 0 ‘Koo‘ (79) and (50), we obtain

~ 0C"~, CO.

_ [ (R7K) -~ (R tanp + [R1) (tanB + [R])
(tanB + |K))’

O
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.0
S|nA12:
sinG,
~p o~y ~p o~

_ 2(Ki1+ K12)(Kiz + K2g) (80)

~2  ~2 -~ ~ ~ - ~2  ~p
[(Kiz—Ka23) K12 — 2K 11K13K23] (1 + K13 + K12)
cotAgzcoseﬁ

1- K11—K12(K13—Kzs)K11+2K12K13K23 (81)

2(K11 + K12) KlS + Kzs

Chun-Woo Lee
From Egs. (80) and (86), $inis obtained as

iy o~ . .
(Kiz—K23) K1z = 2K11K13Kp3

sing, = - = <2 ~, (88)
N K11+ Kia(Kiz + Kzs)
and co§, is obtained from Egs. (81) and (85) as
cosd, = (KlS_KZS)KlI + 2K15K13K 3 (89)

N K11 + K12(K13 + Kzs)

So far, we found the formulas for the CM parametgrs

Both signs are possible for the right-hand side of Eq. (80)52, and etc. in terms of the elements of the short- raqge

But the positive sign is not taken as it yields the inconsistentatrix and the long-range parametérs ﬁnd

result.

. Though it
does not appear explicitly in the formulas of the CM theory,

Thus far, we considered the numerator of the formula foi6 is a CM parameter which should be included in the
tamAd. Let us next consider its denominator given bytheoretical derivation and still remains to be expressed in

1+ K|
~ o0 L
14]R| = - &7 K btarjﬁ+2|K|
tanB+|K|
1 K K —q
#[(KB_KZS)KH 2K11K13K23] Z
2(K11+ 12) anB+|K|
(82)
whereqa, is given by
cotg,
a = T o
COsA,
~2  mp o~y o~y o~ ~ o~
_ 1+ K+ Kip (Kig—Kag)Kia + 2K1oKi5Ko3 (83)
~> ~2 . ~2 ~2 -~ =~~~ -
(1-K11—K12) (Ki3—K23)K12 = 2K11K13K23
From Egs. (78) and (82), we obtain
~y ~p
~ - — 8 —
cotn = - Kzll Kl: = G (84)
2)K11+ Kian€at1
whereby
~2 ~2
COSAlz 1Ko K12 (85)

24 K11 + K12

The sign of the right-hand side of Eq. (84) is not uniquely deter-
mined as it is obtained by taking the square root of the discrimi-
in the

nantD but is taken as minus in order to obtalmggt

terms of short-range MQDT parameters. This connection
can be achieved by considering tiie matrix without

including the elements related to the closed channel, which
will be denoted a&k~  and is given by

. DR K O DR K O
K =E~11 ~12%=E~11 12 EF (90)
OKz Kz g 0Kz K g
Its eigenvalues denoted by f‘ia?n and&oﬁn are easily

obtained as
tamd; = JKaq + Koo,
tansg == Ril + Riz (91)

revealing thaTS? =—52. Therefore we have

32=0, A3 =23. (92)

Following the previous convention, its eigenvectors may be
parametrized as (c6s /2, 8 /2) ansdifB /12, cody /2)
with

. 172
§° D\/Kll + Kip+K O
cos = S|gr(K12)E1—D ,
. 2/\/K11+ Kz U
~0 D/~2 ~2 ~ 2
-6 _ QUKo+ Ki-KpH
sin% =0 —m0 , (93)
U 2,/Ki+K H

form of Eq. (85) so that the self-consistency is obtained with the

conventlon that sﬂgz

we have

24/ K11+ K12 (86)

smA12
1+ K11 + K12
~2 ~2
1
cosA(f2 = —K” Kz . (87)

1+ K11+ K12

is positive. From the convention thatwhere s|gn(<12 ) is 1 for posvalg
slnA12 is positive for small magnitudes lfmatrix elements, °

and for negative
Kiz. Let us consider th& matrix correspondingkto
Similar to Eq. (29), it can be written as

é - —|6g —|Ac§]o|:h e—iAgJoEﬁ' (94)

whered =0 is used. Inserting = 0,AR =0, and'=n
into the background form of Eq. (31) and then equating it
with the one in Eq. (43), we have
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60 R i jod ~
SO(O) ' |A120Eh e 'flze IAg]O'Eh. (95)

The equality of the trace of both sides of the matrix equation
(95), which is isotropic to channel interaction and given by

s = I]5 , is consistent with the previous (70) and, from the
remaining anisotropic part to channel interaction, we obtain

A%, = A3 =23, (96)

6, = Bo. (97)

In term§00f Pauli matrices, eigenphase shifts, and mixing

angles, K™ can be rewritten as

0
K° = arBlo (IR, (87 = tar2o (R (6)2), (98)

from which we have

- - AY
K11 =—-Koo = tan7lzcost9 s
0
Koo = tanLsing
12 = an75|n - (99)

Egs. (93) and (97) yield

cosf, = %
NK11+ Ky
Sing, = —12 (100)

~2 ~2
N K11+ Ky

Substituting Eq. (100) into Egs. ( 89) and (88), we obtain

~2 ~2
2K
cosf, = 2 |f§3c0590+~1—3K23 sin6,,
K1z + K3 Kiz+ K23
~2 ~2
. - 2
siné, =—|§;3—K§3 ing, + %cos&o (101)
K1z + Kz K1z + Kz

and accordingly

~2  ~2 K
Kis=K2s _ coq, +8y), 2152 = singg, +6,) (102)
Kiz+ K53 K1z + Kzs
and finally
Kis  _ 00%(9 +6,), Kag = sin%(e, + 6)

A Rig + K23 A Kis + KgB

are obtained. Substituting Eq. (65) a?oﬂ + Rig = gar? Agz
/2 obtained from (99) into Eq. (103K13  ariths are
expressed completely in terms of CM parameters as

(103)

The final expression for the short—ran&e
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Kis = OC%(9+%)KB— 0sm(9+90)
12 12
€05 €05 (104)

Only Izamong the elements of the K matrix remains

unexpressed in terms of CM parameters while expressions

for the others are given by Egs. (99) and (104). lts

expression is easily obtained frdta; [ as follows
0
K| = (Kls_KZS)KlI+2KlZK13K23 EtanA2 cosd,.
1+K11+K 3,
(105)

matrix can be

written as
U Acl)z Acl)z : ¢ 1 0
0 tan7c0590 tan73|n60 cos§(6r+ 6p)0
D AlZ D
O CoS5° O
B A(l)z : Acl)z & .1 B
K = B tan78|n60 —tan7c0560 0 sm§(6r+ 60)%
0 cos—=* 0
0 2 0
DD 14 & .1 PIASY 0
s c052(6 +6,) sm§(6r+60) 3 tan7c059r B
oy’ cob 0

(106)

Originally 6 parameters are needed to describe the short-
range K matrix due to its symmetric nature. The two
conditions (61) for the resonance-centered representation
restrict the number of mdependent parameters to 4. In Eq.
(106), three CM parametet;‘vs12 6y, 6; and one short-range
parameteé represent those four independent parameters.

Long-range parameter  atl are related to the CM
parameters as

AR =0,
fs = &3,
- 62
tang = _tan5,' (207)

In the above, we obtained the representation, called the
resonance-centered representation, where behaviors of
eigenphase shifts show those of the eigenphase shifts in the
configuration mlxmg theory, asotdy = tanB £ and

cot A5——cotA12(s —q,)/ s +1. So far, we did not
mention about how we can obtam this representation from
the given representation using the transformation (k5),
what are the values of,, (i, andys or equivalentlyus, Ap,

and uz which give the resonance-centered representation.
One of themAy, is obtained asAn/mfrom A = 0 and

An =An+mAu. The procedure of obtaining the remaining
s and s is lengthy and given in Appendix B. The results
are reproduced here
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tan2mu, = (& andg, are not the usual energy parameters but are used
00p;,CCy1,00 oc,,co here as convenient notations as mentioned before). When
2{ KKK~ tr(K°K )] (108) EG (112) is substituted, the last factor of the right-hand side
+ (1= KDk = |k )} of Eq. (110) becomes
(trKoo)z_[KCCUKOO_U(KOCKCO)]Z 0 Ebos:—L(é +9,) for p=1
$ i i r a —4
+ (1_|K00|)2_(ch_|K|)2 cE)scSp~ _ ilnAlzsmGa O 2
tanp + |K in(8,— 1 _
tan2muy = B K¢ sin(6, ef)gcosé(dr—da) for p=2.
(113)

2{(1 = |K°Y)trk®® + [Ktrk°° — tr(K°°K")] _
By Delambre's analogies among the half-angle formula of

cc
zx (K*K |)]}; ; spherical trigonometrs? we have
(1= KD+ (K= K] (k™) (109) .
—[KCCU’KOO—U’(KOCKCO)]Z 1 smé(ea—er) o
cosé(cSr +9,) = 1 coséAlz,

The origin of the Lu-Fano plot off d; ) is moved to a new siné 6;
position by the shifts given byrfs,, mus ) in Eq. (109) so

that the plot E Js ) becomes symmetrical in the new 1
coordinate system 1 cosé(ea— %) 1
y ' cosé(dr—da) = —1cos§A22. (114)
The contribution of the closed channels cosé &

When the system is in thepth fragmentation Entering Eq. (114), Eq. (113) becomes

eigenchannel, the system is described by the wavefunction 0 ol
W, = 3 5p¥Z,c088,, where Z, is the probability E_Slné(ea_er)

amplitude that the system is found in ttté stationary state 1, o . for p=1,
%, and ca®ynalizes ér unit energy. The o co%AlzsinAlzsinGaE Slnéef
probability amplitude that the system is in théh open —£ - = : O
channels is described T, by . Tince is orthogonal i@ + K| &'sin(6,-6,) Eco%l(ga_er)
flux of particles in collision is conserved. This should be so B for p=2.
as the wavefunctions describing closed channels become O co 13
zero at the asymptotic region. Though the presence of the O % '
closed channels do not affect the flux, it affects the collision 0 1
by delaying the process as the particles are trapped there for o ©05 &
some time. Here we want to find out how long the collision 10 o 0 1 for p=1,
system will stay in closed channels when the system is in the coséAlzsinAlzsinGaE cos;(6.-6)
p-th fragmentation eigenchannel. = : 0

The probability amplitudesz;,  for the system in the fzsmef E sinlef
closed channels are given by Eq. (11). In the present case, 0 for p=2.
only one closed and two open channels are involved. If we O Sin:_L(g -6)
use indices 1 and 2 for the open channels and 3 for the o2
closed one, the probability amplitudes are simplified as: 0 1

~ Sl
~ 5 _ <o~ COSOp O ——— for p=1,
Z3pcosB = %KSKTkptanB+|IZ|' (110) siM,co%Agzg COS%(ea_er) s
=—— 0
From Eq. (105) and tgh &%, the denominator of the & g Sin:_Lgf
right-hand side of Eq. (110) becomes é I for p=2.
~ sin5(6,-6,
tang + |K| = fz%r + tan%AgzcosG,Er (112) g %)

, , By Eq. (104) andi = exp Hi(6. + 6)0,/2], the first factor
If we substitutes, sing/sinA7, + cotA], co%, for & and of the right-hand side of Eq. (110) becomes

make use of, = —cotf,, Eq. (110) becomes 1
Ucos:(6,-6,) for p=1,
- & S Rafp=—2—8 2

tang + |K| = ——=——sin(6,-6,), (112) skl =7 "0 4
& sinAZ,sing, (%a=8) “ Coséﬂlzg—smé(ea—e,) for p=2.

(116)
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Using Egs. (115) and (116), Eq. (110) is simplified as

Coost Gf for p=1,

~ ~ Sind, [
Z3,C06 = ‘0 (117)
¢ Dsin:—LG for p=2
O 2 f p .
From Eq. (62), we obtain easily
sing, otz -
il &Dl cosB (118)

¢ LgpO
(the convention thaf: increases from zero eﬁ; increases
from —71/2 is adopted here, which implies thatdios B >0

or cosﬁrsmﬁ < 0). Entering Eq. (118) into Eq. (117), we
obtain the formula foZz,

1 _
) ,D”?Eboséef for p=1,
Z3p == O (119) Figure 2. The spherical triangle formed by the three vectprs

Lagld /.1
B Esméef for p=2. andn,.
and the following equation is easily derived: COSBZe -5z ( ) _ (tanBJr K° ) K (1 + |K) (122)

d_5r (120) It may be more natural to expand physical incoming wave-
dB' functions with incoming-wave channel basis functions.
Using the transformation relation
Eq. (120) shows that though the interaction becomes . . .
complicated as the number of involved channels changes Wi=5 lJJ(|<_)(1+ iK)ki (123)
from one open and one closed channels to two open and one k
closed channels, the total time for which the system stays 'B
) : etween the short-range incoming- and standing-wave channel
a close channel remains the same. The total time delay dye
sis functions and after some manipulations, we get
to a closed channel does not depend on the characteristics 5t
systems. The characteristics of systems appear when we
consider the branching ratio of the probability amplitudes for LIJ( ) = HJ( )+ > Ul )(tanB+ |)(tanB+ K° )
a closed channel to decompose into open channels. This kOQ
ratio is determined by the transformation matrix between ~co, .  ~oo-1
) ) . XK (-i+K") (124)
fragmentation eigenchannels and resonance ones described
by the mixing angled defined in the spherical triangle of
Figure 2. That is, it is purely determined by geometry.

~2
> Z3p=
0

wherek™ is defined by

~o00,-1~o0c
Photofragmentation cross section formulas =K"=k (_' *K7) K (125)
which is the one considered by Lecomte but differs from his
In the photofragmentation processes, the final state iby complex conjugatiohLet us now limit the d|scu53|on to
described b?/ the incoming wavefunctions. Let us denotehe two open and one closed channel case. Then
them asLIJJ . They are obtained from the fragmentatiorbecomes-i& and we have the following identity
eigenchannel wavefunct|onwp or from the short-range

standing-wave channel wavefunctiols ~ as tanB+i i —I(ﬁ+ o) {72

- =- . (126)
tang - i & & HapH
( ) — -0, (T —i oz ( )
Z qu Toi IDZP @ [TcoscSe i With it, Eq. (124) may be rewritten as
+ Y Pi[cosB7e -5z (T)]” (121) qJJ( ) qu(—)_ '5‘43( ) —|(ﬁ+5)gi_51 [Kco(—i . Roo)—l]sj.
igQ
9p (127)

We note the following matrix relations
Now it is_convenient to introduce new short-range wave-

570 = (14+iR) functionsM!”  ancNfiéfined by

TcoscSe
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I\~/I,-(_) _ ~j(— + qJé_)[IZco(—i N Roo)_l]sj, to energy. Modifying Eq. (59) as
~(_ ~ [o]e]
NO = O - L0 R+ k) . 128) tans, = K
£ 1-|k*
With these functions, the square of the modulus of the _ trK®°(K°IK = |K]) + tr(K°°K®) (1 - |K°Y) (A1)
transition dipole moment can be expressed into the Beutler- KE_ K| O
Fano formula given by (1- |K o|) [tanﬁ+ _| °°|E
(o ~ tang/
‘D,-( )‘2 = ‘(LIJ [Tl )‘ = ‘(M( )|T| )‘2‘ plE q‘ , (129) and differentiating with respect & we obtain
tan B/‘,I +1
~ dos
with the complex line profile indeg; defined by (1+ tar?cSz dB
S (D) azo)  KCKAKE K] + (KK (1 - [K D) (1 + tarfp)
/S
(5T Kee |K|D2
(1-[kh* EtanB+ % (A2)
More detailed analysis of Eq. (129) can be done with the —| |D

help of the transformation considered by Lecomte and Ueda

and will be treated in the separate paper. where the explicit formula for the first factor of the left-hand

side is given by

Summary and Discussion 14 tar?dz _

We reformulated the MQDT formulation into the form of 0 K ?
the CM theory by using the transformation considered by [tanB+ |K|
Giusti-Suzor and Fano in order to clearly identify the g |K 0|D
resonance structures. The transformation moves the axes of trK®° KoK —tr (KocKco):|2
the Lu-Fano plot so that the curve, (s ) becomes tanB e
symmetrical. But the short-range reactance matfix |K | 1—|K | A3
obtained is not a form considered by Giusti-Suzor and Fano, 0 cc IKIDZ (A3)
i.e., its diagonal elements are not zero. It means that the Oang +
intra- and inter-channel couplings are not fully separated yet g 1- |K00| g

though the resonance position is centered in the Lu—Fan?
plot. In the two channel case, to make the Lu-Fano pIoE
symmetric is equivalent to the complete deparation of intra-
and inter-channel couplings. But this is no longer true with | 0|
more than two channels. In order to achieve that, we have to (1 —|K°9)" + (trK° ) cCyqp2 coyq2
introduce the orthogonal transformation as well as the phase (1_|K00|) {[tang+ R(x] +[S(« ] 1,
(A4)

renormalization as done by Lecomte and Ueda. Therefore,
where explicit formulas foR(k*) andF (k) are given by

he numerator of Eq. (A3), when organized with respect to
an, becomes

this work should be regarded as a basis for the full
investigation of the resonance structures in the MQDT
formulation. The full investigation will be published as a R(KC) =
separate paper.

(K= [K[) (1= [K°) + trK* (KK — tr(K°°K")]

(1- KT + (k)

Acknowledgment The most part of this work was done
during my sabbatical leave spent in Seoul National
University. | am greatly thankful to Professor Sang Yub Lee F(k°°) =
and the head of the Chemistry department for their cordiality cc 00 [,,CC, 1,00 oc,,co 00
during my visit there. | am greatly thankful to Drs. Ravi Rau — (K= |K[rK—[K ter —tr(K |2< 11 -[K*)
and Suzor-Weiner for reading the manuscript and for their (1—|K°°|) + (trK°°) 5
valuable suggestions and comments. This work was support- (a5)
ed by KRF under contract No. 99-041-D00251 D3001. Substituting Eq. (A3) for 1 + t&fs, Eq. (A2) becomes

Appendix A: The differentiation of the phase shifts with do; _ _ (k%) (1 + tarf B)
respect to energy B tang+ R+ [3()]

Let us calculate the first derivative of Eq. (59) with respectg(k) is negative as can explicitly be shown as

(A6)
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F(K™) = tands — tanrus _ A+ Btang (B4)
) 1+ tandstanmmuy;  C+ DtanB’
(Klles - K12K13)
2 2 2 i
4 (KooK 13— KioKp0) 2 + K + K5, <o @ whereA, B, C, D are defined as
2 2 - ~ ~ ~ OC~ ~
(1-[K°T)+ (trk*) A=Kk —tr(K°K) + trk "’tanrus,
_ ~00_ ~ CC ”00_ ~ 0C", CO.
and becomes equal t§2-of Eq. (63) when tK°)=0. Eq. B= tjlfc ~[K RN ~0£r(K K)]tans,
(A6) tells us that the derivative of the eigenphase sum with C =K —|K| +(1- ‘K ‘)tannys,
respect to energy is always positive. Even individual — x99 _ o
eigenphase shift should have a positive derivative with D=1 ‘K ‘ (‘K ‘ |K|)tan7w3. (BS)
respect to energy according to Macek's formdtila. When Eq. (B4) is solved for tén it becomes
Eqg. (A6) can be rewritten into a Lorentzian form as
_ (A+ Ctanmuy) + (B + Dtanmu;)tanB
dds _ 1 (A8) tand; = (C — Atanms) + (D — Btanmus)tang’ (B6)
CC D CcC DZ
dEtanB+ g}‘c(CK )a EtanB+ QE(CK )D +1 Equating two equations (59) and (B6), we obtain the
o -8k 0 0 =%k U relations containing the proportionality constials

~ 0C~ CO,

From Eq. (A8), the inflection point of the curdievs tanBis  [K “trk°®—tr(K°K")] + trk**tanr,

obtained as tgh= —R(k*°), which is different from the pole ~cc | |09

position of tads given by taf = —(K<—|K|)/(1-K*) in Eq. * [ljc Lf' i ({oc‘f cobtam” sltanms

(A1). Two positions becomes equal #R(«*°) by setting = k[K trK —tr(K" 'K )], (B7)
tr(K°9) to zero. If we further sé&(k*) to zero, the graph of coo  mco o0 - oemco

J enjoys the same behavior as thataih the CM theory trK™ — [K trK " —tr(K™ K™ )] tanmy,

for isolated resonances if 18l§° is identified with-1/s,. ~oo  ~cc |~ _ 00
Then we may seds 3 to make the MQDT formulation * [1_‘K ‘ (K™= K]y tanrs] tanm; = ktrk®,

) . . (B8)
look like the CM one. R K| + (1- ‘Koo‘)tannus
Appendix B: The phase shifts which yield the resonance- —{ KUK = tr(K°°K)] + trk *°tanmu,} tanrus
centered representation _ k(kcc_ 1K), (B9)
First of all, Au(= pa—Lk) is obtained from (71) and (32) as (1- ‘Roo‘) B (Rcc_ ||Z|)tan7w3
= -An. (B1) ~{trK "= [K K - tr(K°°K ™) Jtanru,} tanmuy
_ _|wo
The remaining two parameters might be directly obtained =k |K 0|)' (810)
from the relation (18) betwedtandK but the easier way If we introducep, q, r, sfor convenience as follows
of obtaining them is to make use of the invariance of the
functional form (59) of tad under the change of the p=trK°®+ [K*trK®’—tr(K°°K"%],
reference potentials. The invariance is the result that no _ . oo [ cc, 00 oc,,co
condition on the reference potentials are applied when Eq. q=tK [KTrK =t (KEKEI,
(59) is derived. From this invariance, tgn  is given by r=1- K+ (K= |K]),
. - — 1 - |k°9_(recc_
CRKStrR = tr(KP°K) + trk *°tanp s = 1= [K*=(K*~IKI), (B11)

tandy =~ Lkl (B2)
R_|R| + (1- |k°Y)tang

we can express the sum and difference of Egs. (B7) and (B8)
. . and also the same ones for (B9) and (B10) in terms of them
Using the relationsds =d;-mu; an@=p(+mu; , Eq. as
(B2) becomes

B 1 tang, tanms tannyﬁanny% E) B
tan( 3, - 1) = 0 —tanms 1 ~tamtany;  tav; OO0
= B —tanrus  —tanugtanius 1 tarmu; B% B
Rk —tr(R°K™) + trk “tan(B + mu,) ©3) Davptanyy — —tanmy;  —tangs 1 OO0
~CC ~ ~ 00| ’ 0
R~ K] + (1~ [R*ytan(p + ryuz) P5
_ . . . =k 0 (B12)
which can be transformed into the following by making use Br E
of the tangent law: s
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Eq. (B12) is inverted as In the same way, dividing Egs. (B14) and (B15) byrgas
. and cosgs, respectively, and collecting the terms for
E p E 0 im0 im0, O E p E tanvius, we obtain the formula for tagus as
~ | 3% i — 30y
E 9 Ez E cosnpze_ smnpze_ H('E q Er tan27wz —
0" 0 Osin ! THa Y COS) ' THay oorQ o 00 cc, ,,00 oy, ¢ cc
Hz0 Tz€ Tz € He0 2[(1= [K°DHrk® + (K=K = tr (K"K ) (K™= [K])]

B13) (1= K%+ (KK’ - (trk®)” = [KCtrk ™= tr(K°K™)*

where the new proportionality const&nis related tk ask’ (B18)

= k cogqz cosys. The proportionality constant may be  In the two channel system, general resonance phenomena

determined from the relation betweé&hand K but the are described by the Lu-Fano plot which can differ from

determination requires a long tedious derivation. Eventuallysystem to system in the position of the inflection points

it can be shown th&t is equal to 1K sinfu + cosu | . described by and i, and in the amplitude of the curve
Eg. (B13) holds for any arbitrary reference potential. Indetermined by the interchannel coupling strenfjtin the

the resonance-centered representation where we Heve tr system with two open and one closed channels, two more

=0andk™ =K |p,q,7 ,and arerelated g5 —=q, T parameters\), ané, are needed to describe the coupling
= 3. When the latter relations are applied to Eq. (B13), webetween two curves o, ) ang(d, ) inthe Lu-Fano
have plot and the relative coupling strengths of two open channels

with a closed channel, respectively, besides three parameters

COSTR(PCOSTRLs — g SINTRLs) = SINRU(TCOSTRL — S SiNTgLs) (L, Lz, &) in the two channel system.

= —COSUs(pSinTiUs + qCOTTUs) + SiNUs(rsSinus + S COSUs)
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