Comparison of Charge Distribution in KNb₂PS₁₀ and Nb₂PS₁₀ by Solid State ³¹P MAS NMR Oc Hee Han* and Hoseop Yun† Magnetic Resonance Team, Korea Basic Science Institute, Taejeon 305-333, Korea †Department of Chemistry, Ajou University, Suwon 442-749, Korea Received November 26, 1999 Solid state ³¹P magic angle spinning (MAS) nuclear magnetic resonance (NMR) data of metal thiophosphates, Nb₂PS₁₀ and KNb₂PS₁₀ are employed to identify electron density differences between the compounds. The X-ray diffraction results of the compounds were reported in previous publications: reference 1 for Nb₂PS₁₀ and reference 2 for KNb₂PS₁₀. Nb₂PS₁₀ is a thiophosphate composed of infinite two-dimensional planes. The plane consists of infinite chains of NbS₈ bicapped trigonal prisms sharing a rectangular face and PS₄ polyhedra linking the chains one side to another. There is no strong bonds between the planes except van der Waals' force. KNb₂PS₁₀ has a common structure with Nb₂PS₁₀ of NbS₈ bicapped trigonal prisms sharing a rectangular face and PS₄ polyhedra. But K⁺ ions are located between the planes in KNb₂PS₁₀. Another difference between Nb₂PS₁₀ and KNb₂PS₁₀ is that PS₄ polyhedra in KNb₂PS₁₀ are oriented in the same direction and do not link NbS₈ chains. Thus, KNb₂PS₁₀ consists of infinite one-dimensional chains of NbS₈ and PS₄ units rather than two-dimensional planes. Addition of K to Nb₂PS₁₀ compound is expected to bring electronic charge distribution changes as well as structural changes. There is a report that d- block orbitals of the highly oxidized metals are responsible for Li intercalation to the M₂PS₁₀ (M=V, Nb) compounds rather than the P-S or S-S antibonding.4 Chemical shift parameters are sensitive to electronic and structural differences, therefore, we employed ³¹P NMR to compare electron density around phosphorous in Nb_2PS_{10} and KNb_2PS_{10} . Although K in KNb_2PS_{10} is not incorporated electrochemically, the overall electronic differences between Nb₂PS₁₀ and KNb₂PS₁₀ can give us a clue where the electron density increases on alkali atom incorporation into the compounds. Preparation procedures were described in detail in previous reports. 1,2 KNb₂PS₁₀ and Nb₂PS₁₀ are prepared by the reaction of the elements Nb, P, and S with an elemental ratio of 2:1:10 for Nb: P:S in the presence of and in the absence of the eutectic mixture of KCl/LiCl, respectively. All experiments are carried out with the UNITYplus NMR system (Varian Associates Inc., U. S. A.) of 7.05 Tesla. MAS rate between 1.4, and 4.2 kHz, and 2 μ s pulse length corresponding to 23° flip angle are employed. Samples are ground to fine powders before NMR experiments. Chemical shift is referenced to the external 85% H₃PO₄ aqueous solution and the reading error of center peak chemical shift (δ_{obs}) is within 1 ppm. The ³¹P MAS spectra are simulated with a homemade simulation program to obtain principal values of the chemical shielding tensor (δ_{11} , δ_{22} , and δ_{33}). Isotropic chemical shift (δ_i), asymmetry parameter (η), and chemical shift anisotropy ($\Delta\delta$) are derived from δ_{11} , δ_{22} , and δ_{33} values using the following equations,³ $$\boldsymbol{\delta}_i = (1/3)(\boldsymbol{\delta}_{11} + \boldsymbol{\delta}_{22} + \boldsymbol{\delta}_{33})$$ for $$|\delta_{11} - \delta_i| \ge |\delta_{33} - \delta_i|$$, $\Delta \delta = (3/2)(\delta_{11} - \delta_i)$, $\eta = (\delta_{22} - \delta_{33})/(\delta_{11} - \delta_i)$ $$\begin{array}{l} \text{for } |\delta_{11}-\delta_i| \; |\delta_{33}-\delta_i|, \\ \Delta\delta = (3/2)(\delta_{33}-\delta_i), \; \eta = (\delta_{22}-\delta_{11})/(\delta_{33}-\delta_i). \end{array}$$ Representative ³¹P MAS spectra of Nb₂PS₁₀ and KNb₂PS₁₀ samples and spectrum simulation are shown in Figure 1. Chemical shift parameters from the spectrum simulation of the ³¹P MAS spectra obtained at various rotation rates are summarized in Table 1. Previous studies have indicated that ³¹P chemical shift is mainly influenced by three factors: (1) the number and electronegativity of the nearest-neighbor ligands, (2) the occupation of the π bonding orbitals on the phosphorous atom, and (3) the bond angles about the phosphorous atom.^{5,6} For orthophosphate ions, a good correlation between $|\Delta\delta|$ and the average deviation of the O-P-O bond angle from that of a perfect tetrahedron (109°28') was obtained. Also δ_i of an orthophosphate ion was well correlated with the average P-O bond length.⁷ The latter correlation can be understood from the observation that the average P-O bond length decreases as the number of electrons in π orbitals increases^{7,8} while δ_i decreases with increasing number of electrons in π bonding orbitals for the orthophosphate ions.^{5,8} For our Nb₂PS₁₀ and KNb₂PS₁₀ samples, factor (1) is expected to be constant, or nearly so, thus can be ignored. We may apply the same methods used for orthophosphate ions to PS4 units in our samples considering the fact that oxygen and sulfur belong to the same group 16 in the periodic table. Then, the smaller δ_i and the greater $|\Delta \delta|$ of KNb₂PS₁₀ than those of Nb₂PS₁₀ can be explained in terms of the shorter average P-S bond length and the bigger average deviation of S-P-S bond angle from 109°28' of KNb₂PS₁₀. The average bond length of four P-S bonds is 2.044 ± 0.005 and 2.036 ± 0.005 Å for Nb₂PS₁₀ and KNb₂PS₁₀, respectively. The average deviation of S-P-S bond angle from ideal tetrahedron was 3.5 ± 0.2 and $4.6 \pm 0.2^{\circ}$ for Nb₂PS₁₀ and KNb₂PS₁₀, respectively. In our previous studies, the incorporation of alkali metals into the Nb₂PS₁₀ host structure by electrochemical processes ^{*}To whom correspondence should be addressed. Tel: +82-42-865-3436, Fax: +82-42-865-3419, E-mail: ohhan@comp.kbsi.re.kr Figure 1. ³¹P MAS NMR spectra of (a) Nb₂PS₁₀ at 2.57 kHz spinning rate and (b) KNb₂PS₁₀ at 3.50 kHz spinning rate. Simulated ³¹P MAS NMR spectra (c) with parameters of 2.57 kHz spinning rate, 121.49 MHz Larmor frequency, δ_{11} = 182.0 ppm, δ_{22} = 118.0 ppm, δ_{33} = 77.0 ppm, and 400Hz line broadening and (d) with parameters of 3.50 kHz spinning rate, 121.49 MHz Larmor frequency, $\delta_{11} = 177.5$ ppm, $\delta_{22} = 133.5$ ppm, $\delta_{33} = 39.5$ ppm, and 400Hz line broadening. Center peaks are marked by *. failed. Thus, it is still a question which part of the host compound plays a role as an electron acceptor for alkali metal intercalation. However, our NMR results can be taken as an evidence that electron density around P increases on average as K is added to the Nb₂PS₁₀ because smaller δ_i value of KNb₂PS₁₀ indicates greater number of electrons in π orbitals of P in KNb₂PS₁₀ than in Nb₂PS₁₀. Among all the P-S bonds, contribution to this increased average electron density around P is expected to be more from the P-S bond with a terminal S in KNb₂PS₁₀. The length difference between this and the corresponding P-S bond in Nb₂PS₁₀ is 0.14 Å which is biggest among all P-S bond length differences between the KNb₂PS₁₀ and Nb₂PS₁₀. Therefore, we can conclude that the presence of K in KNb₂PS₁₀ results in the increase of electron density Table 1. ³¹P chemical shift anisotropy parameters of compounds | Compound | δ ₁₁ (ppm) | δ ₂₂ (ppm) | δ ₃₃ (ppm) | δ_i (ppm) | η | $ \Delta\delta $ (ppm) | $\overline{\delta_{ m obs}}^* \ (m ppm)$ | |-----------------------------------|-----------------------|-----------------------|-----------------------|------------------|------|------------------------|---| | KNb ₂ PS ₁₀ | 177.5 | 133.5 | 39.5 | 116.8 | 0.57 | 116.0 | 117 | | $Nb_2PS_{10} \\$ | 182.0 | 118.0 | 77.0 | 125.7 | 0.73 | 84.5 | 126 | ^{*}Experimentally observed chemical shift. around P-S bonds, especially the ones with terminal S. This does not necessarily mean that the axis of δ_{33} coincides with those of the P-S bonds with terminal S even though it is more likely in terms of symmetry. The orientation of δ_{33} axis can be determined only with single crystal samples, however, the KNb₂PS₁₀ and Nb₂PS₁₀ single crystals big enough for NMR experiments have not been able to be grown. Although we cannot completely exclude the possibility that d- block orbitals of Nb behave as an acceptor for some of electrons from K, our results clearly indicate that phosphorous and sulfur are principal electron acceptors, especially by P-S bonds with terminal S in KNb₂PS₁₀. In summary, electron density around P in KNb₂PS₁₀ and Nb₂PS₁₀ is studied by comparison of the ³¹P MAS NMR spectra of the compounds. Isotropic chemical shift and chemical shift anisotropy of KNb₂PS₁₀ are smaller and wider than those of Nb₂PS₁₀, respectively. The smaller isotropic chemical shift is correlated with the shorter average P-S bond length of PS₄ unit and the wider chemical shift anisotropy is due to the wider average deviation of S-P-S bond angle of PS₄ unit from 109.5°. The shorter average P-S bond length can be interpreted as more electrons in π bonding orbitals of the P-S bond. Our results imply that electrons from K (electron donner) mainly go to phosphorous and sulfur rather than to the *d*-orbitals of Nb. **Acknowledgment**. This work is partially supported by the MOST (Ministry of Science and Technology in Korea) through a KOYOO project fund endowed to the KBSI (Korea Basic Science Institute). Dr. Eun Kyu Jang at the KBSI (presently at Samsung Electronics Incorporation) is thanked for spectrum simulation. ## References - 1. Brec, R.; Grenouilleau, P.; Evain, M.; Rouxel, J. Rev. Chim. Min. 1983, 20, 295. - 2. Do, J.; Yun, H. Inorg. Chem. 1996, 35, 3729. - 3. Duncan, T. M. A Compilation of Chemical Shift Anisotropies; The Farragut Press: Chicago, 1990; p 3. - 4. Evain, M.; Brec, R.; Whangbo, M.-H. J. Solid State Chem. **1987**, *71*, 244. - 5. Topics in Phosphorous Chemistry; Crutchfield, M. M., Dungan, C. H., Van Wazer, J. R., Eds.; Interscience: New York, 1967; Vol. 5, Chap. 3. - 6. Techniques of Chemistry; Bentley, K. W., Kirby, G. W., Eds.; Wiley-Interscience: New York, 1972; Vol. 4, p 355. - 7. Turner, G. L.; Smith, K. A.; Kirkpatrick, R. J.; Oldfield, E. J. Magn. Res. 1986, 70, 408. - Andrew, E. R.; Bryant, D. J.; Cashell, E. M.; Dunell, B. A. Chem. Phys. Lett. 1981, 77, 614.