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The One Pass Method (OPM) previously presented for the identification of single input single output systems

is used to estimate the parameters of a Decentralized Control System (DCS). The OPM is a linear and therefore
a simple estimation method. All of the calculations are performed in one pass, and no initial parameter guess,
iteration, or powerful search methods are required. These features are of interest especially when the parameters
of multi input-output model are estimated. The benefits of the OPM are revealed by comparing its results
against those of two recently published methods based on pulse testing. The comparison is performed using
two databases from the literature. These databases include single and multi input-output process transfer
functions and relevant disturbances. The closed loop responses of these processes are roughly captured by the
previous methods, whereas the OPM gives much more accurate results. If the parameters of a DCS are
estimated, the OPM yields the same results in multi or single structure implementation. This is a novel feature,
which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable
DCSs

Key Words : Parameter estimation, Time delay, Least squares estimation, Linear algorithm, Decentralized
control system

Introduction Only recently a method which is simple, accurate and free
from the above drawbacks was proposdthe method is
Identification of transfer functions models is required for called OPM because the estimation is performed in one pass.
the tuning and design of controllers. For this purpose, &he OPM is, to the best of our knowledge, a novel appli-
model of the process is assumed and its parameters atation of linear and non-recursive Least Squat&) {denti-
evaluated from a test response data. It has been recdgnizditation in the frequency domats.
that most process dynamics may in general be simplified by Due to its salient features the results of the OPM were

the first order plus dead time@QPDT) model as: extensively comparéd®with other methods. However all of
-sh these comparisons were performed using only step response
G(s) = b”;+ 1; k>0 D tests. Hence, It is important and interesting to investigate the
OPM results using another popular test signal. A useful and
or by the second order plus dead tirS®PDT) model as: practical test for obtaining experimental dynamic data from
ke many chemical engineering processes is pulse testing. This
G(s) =—; m ; kn,>0 (2) test signal does not generate an output offset and the test
as +bs+1 time is relatively short. Due to these features estimation

Thus many estimation methods are found in the literature fomethods using pulse test signal continuously appear in the
the parameter estimatiorPE) of FOPDT and SOPDT literature®®
models? To enhance the accuracy of the results nonlinear Modeling issues associated with multi-input, multi-output
search algorithms are used. But this partially prevents thefMIMO ) systems have long been a significant focus of
usage as on-line and on site method. Moreover, it has beeattention. Even when a proposed MIMO identification is
recognized that the main problem concerned with the delatechnically sound, ease of use consideration remain a press-
estimation with prediction error techniques is due to theing issue to engineering practi®The coupling between
multimodal nature of the loss function to be minimized withthe system loops degrade the identification results, and as a
respect to delayThus an incorrect guess may results with consequence far fewer investigation were done for MIMO
inadequate estimation. The problem is more complicated isystem as compared with single input single output®one.
one realized that the estimated delay is not necessarily thEherefore, there is great incentive for developing “simple
true one,i.e. the one measured directly from the pulseand convenient” ways to accomplish system identification
response, but rather one of the four parameters whichnd subsequent control design when the intended application
minimize the loss function in question. is multivariable controf® In this content the application of

the OPM to MIMO systems with decentralized controllers is
*To whom correspondence should be addressed. E-mail: edi@vestigated.
iec.co.il We compare the results of the OPM with those of two state
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of the art methods. These two methods are applied in open 8icr: a4 PPN biep: w14
and closed loop structures and were especially designed forxg @il + u% @il + Z% wlf(jo)
pulse response data. The bases for the comparison are com-
posed of four single input single outp®&I$O) dynamics

and one MIMO process Thus the performances of the
OPM with pulse data response and MIMO/SISO structures
are thoroughly investigated in this paper.

The paper is organized as follows. In the next section the
OPM is derived and the state of the art methods based on
pulse testing are briefly presented. The comparison between
the methods is carried out in open loop and with four bigr: N4 2ier: w4 NP
representative SISO dynamics. The results of the estimation X% @il + u% Wil + Z% f(G )l
of the parameters of a MIMO DCS model are presented =5 If(j w)lz 9c)
next, and finally the last section deals with the conclusions. G

=2 Wfo)” (%)

X3 @G +u Wi + 23 oo’

=2 W)’ (9b)

From these linear equationsu, z are obtained and using

OPM Parameter Estimation Eq. (6) we get:

We rewrite the SOPDT model in the frequency domain as: K, = 705 4= kaO'S; b= (ukrzn + 2a)0'5 (10)

k_e1"
G(jw) = mz— 3) A linear LS phase estimator is now defined:

l-aw +jbw

Thus the LS estimator of the squared amplitude is: Jo = 2 [argf(jw) + hw+ arg(taa? +jbw)? (11)
w
Ja=2 [IfG w)|2— |G(ja))|2]2 4) And this yields the dead time expression:
w
where: f(jw) is the frequency response data, which is Y [argf(jw) + arg 1- aw2+jbw)]w
calculated from the pulse test time response. h=-= 5 (12)
After some modification one obtains: Y w
w
2 Remarks:
1 1. The methotican be used to generate and calculate the
Ja=2 | oo)|2 - > (5) frequency response data.
® a s,b-2a- 1 2. If the identified process is of a higher order the
K, K2, K2 arguments which minimize Eq. (8) do not minimize Eq. (7).

In this case the model obtained via the minimization of Eq.
The following substitution of variables is now in order: (8) is weighted towards the high frequenéieBhus we
22 b2_2a 1 select the critical frequency as the upper limits for the
X==,u=—7%—; 2= (6) frequency summation in Eqg. (9). This forces the model to be
Km K Km skewed towards this critical frequency. A novel features if
Therefore: “identification for control” is sought®
3. A fairly pedestrian approach is taken to derive the OPM
1 T 7) algorithm for a DCS. The extension relay on the linear
2 properties of the method and is explained in details in latter
on.
The estimator is nonlinear in the parameters. To make it If one follows the same lines as for the second order model
linear we follow Levy's ideaand multiply each term in the and usea =0, the following matrix equation is obtained for
summation by the denominator of the right hand side termthe FOPDT parameter estimation:

=3 | fGal - —

2
Xw +uw +

The original loss function becomes:
L i) o) H =y |G (1)
3 =2 xalf( o) + uaf(w)l” + 2w - 11" 8) S At Gt |12 @ | rGa)?
The minimum of the loss function is obtained if the kma@ndb are then calculated from Eq. (10). The dead time
following relations hold: estimation is also easily obtained as:
W o By % > [argf(jw) + arg( 1+ jbw)] w
ox " du ' 0z h=z-2 (14)

2
and these result with the equations: % w
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Two Comparative Methods Based on used to find the three model parametées the Jc(m, n)
Pulse Response Data minimization. This is again conducted by the “fmins”
function. Again an initial guess of the parameters is required.

In order to investigate the relative advantages of the OPM
it is compared with the two state of the art methods. The Results of Estimation in Open Loops
comparison is carried out by a simulation study over a large
number of system dynamics, which were previously selected Four example processes are used for the performance test
and used for this purpose. All the relevant aspects of thef the OPM estimation in open loops, and the results are
pulse selection and related noise disturbances are alreadpmpared against the OLM ones. The transfer functions of
included in the bases and therefore reflected in thehe processes are as folfow

simulation results. Thus a full and a compressive study is o3 1
performed, eliminating the chance that the results are ‘only a P(s) = ——————; P,(s) = ———;
fluke of luck’. (s+1)(2s+1) (s+1)
In the sequel a brief description of the two state of the art _ N ) _ e’ )
o . - Pi(s) = —————: P,(s) = ;
methods is given. For further details the reader is directed to 9%+ 245+ 1 (25° + 25+ 1)(s+ 1)

the relevant referencés. (18)
Open Loop Method (OLM). To apply this method, a

square pulse is introduced at the process input and a pulsecommon practice is to choose the sampling frequency as

response is recorded in a relatively short time period. 10 to 30 time’ the equivalent time constant inverse. In this
Two points 1, p2) of the pulse time response are used inexample a synthesis of a proportional, integral and derivative

the estimation procesg, is selected as the first peak of the (PID) controller is desired. Since a PID controller can

pulse response, whergasis arbitrarily chosen. The estima- achieve a high bandwidth frequerttya sampling rate of 6

tion loss function is defined as follows: cycles/min is selected. A square pulse of a height of 1 and a
d d width of 1 [min] is appliedto all four-example processes.
Jo = |P1=Pin| +|P2—Pon| * d—tpz(t) —d—thm(t) (15) With the OLM one has to select an initial guess for the

parameters, and the location of the second data point. We

The values of the parameters of the model (see Eq. (2)Jake the second pofrp, att = 10 [min], and try two initial
which minimize the cost given by Eq. (15), are the estimatedjuesses for the estimated parameters (marked 1, 2). We
ones. The minimization is conducted through the MATEAB select these initial guesses to be symmetric around the
function “fmins”. Note that the procedure requires initial previously estimated valuéOur results are designated as
values of the model parameters, and it is claimed that an@LMn;and OLM,,;, and are presented in Tables 1-4. The n
reasonable values are good for the initial guess. subscript stands for the level of the noise, which is injected

Parameter Estimation of a DCS in a Closed Loop atthe process output. For the OPM initial conditions are not
Configuration (CLC) . This method is applicable for multi- required, therefore one subscript (n) is sufficient to designate
variable decentralized systems. It is assumed that the DC®wir results with this method.
are well defined for the control structure, therefore no “gain  The estimated models are used in a PID controller synthe-
directionality”problent? is associated with these systems. sis2 Thus the integral of absolute difference (IAD) between

The estimation test is performed with all of the processethe designed closed loop response and the true one is
in closed loops. A pulse change is sequentially applied t@onsidered as a relevant quality measure for the quality of
each set-point while the others are kept constant. Théhe PE. The closed loops responses to a combined

following matrix function is then derived: disturbance and set point unit steps are simulated, and the
. fag ming IADs are calculated up to 25 [min]. The values of the IADs
P=[RY -1] C (16)  are presented in Table 3 for tAgs) process.

o This process is a true SOPDT process, and a perfect esti-
where: Y, P, R, C are respectively: the Laplace transformmation should lead to a zero IAD in the noise free case.
of the outputs, the process matrix transfer functions, diagonafowever a difference of 116% is found between the IADs of
matrix of the Laplace transform of pulse set point changeshe OLMs with a noise level of zero, and a difference of
and diagonal matrix of control matrix transfer functions. 114% for the noise level of one. Thus, the OLM results

The Fourier transform of Eq. (16) is the ‘estimation data’.highly depend on the initial guess.
These data is used to estimate a matrix model of FOPTD With the OPM we first calculate the open loop frequency
transfer functions. The estimation loss function is defined foratio for the various noise levels. The process frequency

each element, n) of the matrix model as follows: response for pulse input is calculated as folfows
> .. Cjef y(nedt
Ie(mn) = 3 [P, i @) =G n(j )| (17) fjw) = —"——— (19)
i=1 H(1-¢e’")

The two frequencies in Eq. (17) are arbitrarily chosen and The number of frequency points to be calculated is a
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matter of ‘curve fitting’ technique. For a second order systemnstead of the RIAD the IAD values are presented in Table 3.
three points of the amplitude frequency graph are required tdgain, the OPM-IAD values are much smaller than the
fix the values of the three parameteks, @, b). If noise is  OLM ones.

presenF two more frequency points are neede_d to de&gn@.{gble 1 Estimation results oP(s)
the noise parameters. To be on the safe side the poinis

number is doubled. . _ Met Noise orpy a b h  RIAD
Ten points of frequency are then calculated in the interval Level

(O, Critical frequency]. These points are used in Egs. (9)OLMo 0 0 0989 1.374 2344 23867 97.9
(10), (12) to calculate the values of the parameters. As statedl.Mo, 1.283 4.545 4.264 2.312 96.6
the Ps(s) process is a SOPDT one, therefore the estimatioPM 1.000 3.181 3.505 3.503 00.0
results can be directly compared against the true ones. Th@.M1; 1 0.01 1.035 2573 3.208 1.047 98.0
f(ja) points of this process are depicted in Figure 1 againsbLMi. 0.955 2.804 3.349 4.151 95.8
the Bode plot of the model. The match is tight and noopPm; 0.982 3.549 3.648 3.378 23.0

difference can be observed between the data points and tR@es: A. Initial conditions for OLM are -kn = 0.5a = 2 h = 2.

relevant Bode points of the ORhodel. It is obvious from  B. Initial conditions for OLM; are -kn = 1.5a=5b = 45h = 4.

the data in Table 3 that the results of the OPM are the closeSt STD-standard deviation of a Gaussian noise with zero mean.
o : . RIAD\PID settings (i =0.931, J=4.34 § = 1.54)

to the true ones, and are the less sensitive to the noise. T

order to emp_haS|ze the relative |m_provemen_t of the OPM 8$able 2 Estimation results oP,(s)

compared with another method (i), we define the relative

improvement of the IAD value as: Method 'EIS\I/ZT STD  km a b h  RIAD
_IAD; —1AD opy, OLMe O 0 0524 1.729 2630 0.861 81.1
RIAD; = AD, (20)  OLMe 0.824 2012 3.155 2568 70.9
. OPMy 0.998 3.753 3.469 1.551 0.0
where IADgpy, is the closed loop IAD between the OLMu 1 001 0524 1729 2630 0861 810
response of the OPM model of zero noise and the true ONGy M., 0927 2340 3.438 2470 713
The RIADs are computed and added to Tables 1, 2 and 4. OPM, 1010 3785 3566 1506 63

The RIAD values clearly demonstrate the major improve o5 A Initial conditions for OLM PRy —
. . Fr - Notes: A. Initial conditions 1or are -Kkm=0.0a=1. = = 1.
m_ent obtained with the O_PM. This is further demons_trated |rg_ Initial conditions for OLM; are -k = 1.5a = 45b = 45h = 2.
Figure 2. where the variou,(s) model responses in the cC.RIAD\PID settings (= 1.41, J= 3.50 $ = 1.50).
closed loop are depicted against the true one. Obviously the o
OPM, response is almost the same as the true one, where&ple 3 Estimation results dPs(s)

the OLM ones significantly differ from it. The noise Noise
influence can be detected by the RIAD difference betweenethod Level STD a b h  1AD
the O noise level case and the 1 noise level. From Tables L.&Mo, 0 0 0961 11111 1711 0305 1.193
and 4 the additional average for the OPM is 18% AL Mos 1.097 7.671 3209 1578 2588
compared to an average of 81% for the OLM. For the tru&ypiv, 0.996 9.019 2.387 1.002 0.022
SOPDT process the RIARsolution is very poor. Therefore OLMwu 1 001 0753 7.152 1.080 0.927 1.354
5 ' 0 OLM1 1.252 7.644 3.721 1535 2.903
OPM. 0.992 9.190 2.387 0.957 0.073

True values 1.000 9.000 2.400 1.000 0.00

Notes: A. Initial conditions for OLM are -kn=0.5a=6b=2h=0.8.
B. Initial conditions for OLM; are -kn, = 1.5a=12b=4h=15.
C. IAD\PID settings (= 1.95, J=3.33 $ = 3.02).

-0.5F

Table 4 Estimation results dP,(s)

Identification Noise

Phase (rad)
P

STD  km a b h  RIAD

Amplitude (dB)

Method Level
2t 1 OLMo1 0 0 0578 0.818 1.425 2.620 74.6
OLMo2 0.437 0.251 1.097 3.014 80.2
25} 1 OPMy 0.999 2.388 2.367 1.649 00.0
OLM11 1 0.01 1.119 6.712 2.363 0.458 72.0
. 3 . OLM12 0.690 0.827 1.818 2.587 67.1
10° 10 0 107 10° 10 OPM 1.010 2177 2.381 1.689 23.7
frequency (rad/min) frequency (rad/min)

. . ) Notes: A. Initial conditions for OLM are -kn =0.5a=2b=1h=1.
Figure 1. Frequency response data pointB4{§) against the Bode B. Initial conditions for OLM, are -kn, = 1.5a=6b =4h = 2,
plot of its OPM model. C. RIAD\PID settings (K=1.15, J=2.01 = 1.69).
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2.5

time [min]

Figure 2. True and estimated closed loop respons&s(sf with a
series PID controlleik{ = 0.931,1, = 4.34,7p = 1.54).

Results of Estimation in Closed Loops

The example system is ax3-distillation dynamics, and

the process transfer functions are listed in Table 5. The

following test procedure is followedFirstly, decentralized
proportional controllers are applied to the dynamics in closed/sing the same reasoning a global phase estimator is also
loops. The proportional gains are 1, -0.1 and 1 for loops 1, asily derived.

and 3, respectively. Then, a rectangular pulse having height Since any system componemt, (n) is independent, the

of one and width of one [min] is applied to the set point oflinear LS solution of the global estimator of Eq. (22) is
each control loops one at a time and a sampling rate of 0@xactly the same as the one for the single estimaidghe

[min] is used. The CLC procedure is now used to obtain th&olution of Egs. (9)-(10) is repeated for every ) compo-
estimation data at the two frequency pdins01 and 0.05

[rad/min].

Instead of minimizing the loss function of Eq. (17) for _ _ .
each system component, we minimize the following globalused with the global OPM estimator, and the estimated

loss function:

Je= 2 Je(m,n)

(21)

Table 5. Processes and estimated models ok 8 Blistillation system
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If the “fmins” routine is used to minimize this cost function,
it results with negative delays and negative time constants.
Therefore an optimization with zero lower bound on the
delays and time constants is applied, and is carriediaut
the MATLAB “constr” function. Two sets of initial
conditions are used, and the results are designatedaZidC
CLC:. These results are depicted in Table 5 and the associat-
ed initial conditions are presented in Table 6. It can be
observed that the CliCvalues for P13 andP,are
approximately half of those obtained with the GLMore-
over, using the single estimator of Eq. (17) another values
were obtainetfor the parameters of the distillation model.
Returning to the OPM, a global amplitude loss function is

introduced as follows:
Jy= 3 Ju(mn) (22a)
m, n

where:

wmm) = 3 [ffm i @) ~|Gn ) )

nent. The same reasoning is also true for the solution of the
global phase estimator.
The ‘estimation data’ used with the CLC method is also

parameters are presented in Table 5. Again the OPM results
are very close to the true ones (see Table 5 for details). In
contrast to the previous results no ambiguousness exists

Process Actual Estimated
CLC, CLC, OPM
|51,1 0.6&—2.65 0.6&—2.605 0.666_2'605 0.666_2'595
6.7s+1 6.7s+1 6.7s+1 6.7s+1
P1,2 _0.6&—3.55 _0.616—3.515 _0.616—3.515 _0.616—3.55
) 8.64s+1 8.63+1 8.63+1 8.63s+1
Pis =0.004% -0.00487°""® —0.005™® 0.004g570%%
) 9.06s+ 1 6.49%+1 15.1&+1 9.06s+1
PZ, 1 1.116_6'55 1.116_6'505 1.116_6'505 1.116_6'495
) 325 +1 3.255+1 3.255+1 3.255+1
PZ, 5 —2.36_35 _2.3%—3.0(5 _2.3%—3.0(5 _2.2%—3.0(5
) 5s+1 5.00s+1 5.00s+1 499+1
P2, 3 _0.016—1.25 _0.016—1.045 _0.016—1.335 _0.016—1.195
) 7.0%+1 4665+ 1 10.06+ 1 7.095+1
P31 —34.687°7% —34.76°% —34.76°% —34.687%1%
8.155+1 8.2s+1 82s+1 8.16s+ 1
P32 46.227°% 46.227% 46.227°% 46.2487%%®
) 10.%s+1 10.%s+1 10.%s+1 10.93+1
P33 0.89 11.65+ 1)e° 0.86e%* 0.86e%* 0.86e*
(3.8%+1)(18.8s+ 1) 6.8%+1 6.825+1 6.595+1
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Table 6. Initial conditions for the estimation of the distillation
system

Process Initial Conditions
CLCy CLC,
blyl 0.36_1S 1e—4$
3s+1 10s+ 1
P12 -0.3e° 16>
4s+1 12s+1
P13 —0.006>> -0.007e>
6s+1 15s+1
P21 0.5 1.5
1s+1 5s+1
|’:'>2‘ 5 el 4745
25s+1 75s+1
P23 —0.005% % -0.0267%®
4s+1 10s+ 1
P31 —176° —50e >
4s+1 12s+1
Ps 2 25e°° 60e >
5s+1 155+ 1
P3, 3 0.56_0'55 1.5¢ 1.5s
3s+1 10s+ 1

between the OPM results which are obtained with the single

and global estimators.

Conclusions

Eduard Chereand Lev Podshivalov

These highly facilitated the application of the OPM at the
plant floor especially with MIMO systems.

Nomenclature
: denominator cefficient in eq. 3
: denominator cefficients in eq. 3
: diagonal matrix of control transfer functions
: width of pulse [min]
: frequency response data [rad/min]
: transfer function of a process model
. height of pulse
: dead time [min]
. identity matrix
. fundamental imaginary number
Jas JA(m ) : LS estimators of the squared amplitude
J. : Levy estimator
Jo : OLM estimator
N Jp(m n : Phase estimators
:controller proportional gain
: model gain
: transfer function of a process
: multivariable process matrix function
mn . COMponent oP
pz data points from the pulse response curve
pzm points from the model pulse response curve
: diagonal matrix of pulse set point changes
: Laplace variable
: time [min]
. assigned variable
: assigned variable
process output
: matrix of multivariable outputs
. assigned variable

El

55

X c~wn ;U;O'O peBvinv

y(t)

Greek Letters

w : vector of frequency points [ rad/min]
o : controller derivéive time [min]

1, : controller integral time [min]

The OPM is extended to the MIMO case and it’s results

are investigated and compared against two state of the art

methods based on pulse testing.

The comparison is performed by a simulation study. To 1.
remove the chance that the study results are just ‘a fluke of
luck’ two comparative test bases from the literature are used.
One basis includes four high order SISO dynamics and thes.

second includes a3 MIMO process with decentralized

controllers in closed loops. In all the cases the OPM results
are better than those obtained with the previous methods:
The OPM results are also found to be more robust to theg

measurement noise.

As differ from the previous methods, the OPM is linear 7.
and it's results do not depend on an ‘initial guess’ of the
parameters. Moreover, the drawback of multiple solutions of 8.
the previous methods is removed. It is also shown that the,

OPM results for a global MIMO estimator are identical to

those of several SISO estimators. This outcome is unique tol.
the OPM and is not achieved by any of the previous methods.

In other words, a linear algorithm for the explicit solution of

the MIMO global estimator is obtained whose calculationy,’

burden is equivalent to the one of an SISO estimator.
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	Method
	Noise
	Level
	STD
	km
	a
	b
	h
	RIAD
	OLM01
	0
	0
	0.989
	1.374
	2.344
	2.867
	97.9
	OLM02
	1.283
	4.545
	4.264
	2.312
	96.6
	OPM0
	1.000
	3.181
	3.505
	3.503
	00.0
	OLM11
	1
	0.01
	1.035
	2.573
	3.208
	1.047
	98.0
	OLM12
	0.955
	2.804
	3.349
	4.151
	95.8
	OPM1
	0.982
	3.549
	3.648
	3.378
	23.0
	Method
	Noise
	Level
	STD
	km
	a
	b
	h
	RIAD
	OLM01
	0
	0
	0.524
	1.729
	2.630
	0.861
	81.1
	OLM02
	0.824
	2.012
	3.155
	2.568
	70.9
	OPM0
	0.998
	3.753
	3.469
	1.551
	 0.0
	OLM11
	1
	0.01
	0.524
	1.729
	2.630
	0.861
	81.0
	OLM12
	0.927
	2.340
	3.438
	2.470
	71.3
	OPM1
	1.010
	3.785
	3.566
	1.506
	 6.3
	Method
	Noise
	Level
	STD
	km
	a
	b
	h
	IAD
	OLM01
	0
	0
	0.961
	11.111
	1.711
	0.305
	1.193
	OLM02
	1.097
	7.671
	3.209
	1.578
	2.588
	OPM0
	0.996
	9.019
	2.387
	1.002
	0.022
	OLM11
	1
	0.01
	0.753
	7.152
	1.080
	0.927
	1.354
	OLM12
	1.252
	7.644
	3.721
	1.535
	2.903
	OPM1
	0.992
	9.190
	2.387
	0.957
	0.073
	True values
	1.000
	9.000
	2.400
	1.000
	0.00
	Identification
	Method
	Noise
	Level
	STD
	km
	a
	b
	h
	RIAD
	OLM01
	0
	0
	0.578
	0.818
	1.425
	2.620
	74.6
	OLM02
	0.437
	0.251
	1.097
	3.014
	80.2
	OPM0
	0.999
	2.388
	2.367
	1.649
	00.0
	OLM11
	1
	0.01
	1.119
	6.712
	2.363
	0.458
	72.0
	OLM12
	0.690
	0.827
	1.818
	2.587
	67.1
	OPM1
	1.010
	2.177
	2.381
	1.689
	23.7
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	Actual
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	CLC2
	OPM
	Process
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