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Parameter Estimation of Single and Decentralized Control Systems
Using Pulse Response Data 
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The One Pass Method (OPM) previously presented for the identification of single input single output systems
is used to estimate the parameters of a Decentralized Control System (DCS). The OPM is a linear and therefore
a simple estimation method. All of the calculations are performed in one pass, and no initial parameter guess,
iteration, or powerful search methods are required. These features are of interest especially when the parameter
of multi input-output model are estimated. The benefits of the OPM are revealed by comparing its results
against those of two recently published methods based on pulse testing. The comparison is performed using
two databases from the literature. These databases include single and multi input-output process transfer
functions and relevant disturbances. The closed loop responses of these processes are roughly captured by th
previous methods, whereas the OPM gives much more accurate results. If the parameters of a DCS are
estimated, the OPM yields the same results in multi or single structure implementation. This is a novel feature,
which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable
DCSs. 

 Key Words : Parameter estimation, Time delay, Least squares estimation, Linear algorithm, Decentralized
control system

Introduction

Identification of transfer functions models is required for
the tuning and design of controllers. For this purpose, a
model of the process is assumed and its parameters are
evaluated from a test response data. It has been recognized1

that most process dynamics may in general be simplified by
the first order plus dead time (FOPDT) model as:

 (1)

or by the second order plus dead time (SOPDT) model as:

 (2) 

Thus many estimation methods are found in the literature for
the parameter estimation (PE) of FOPDT and SOPDT
models.2 To enhance the accuracy of the results nonlinear
search algorithms are used. But this partially prevents their
usage as on-line and on site method. Moreover, it has been
recognized that the main problem concerned with the delay
estimation with prediction error techniques is due to the
multimodal nature of the loss function to be minimized with
respect to delay.3 Thus an incorrect guess may results with
inadequate estimation. The problem is more complicated if
one realized that the estimated delay is not necessarily the
true one, i.e. the one measured directly from the pulse
response, but rather one of the four parameters which
minimize the loss function in question. 

Only recently a method which is simple, accurate and f
from the above drawbacks was proposed.4 The method is
called OPM because the estimation is performed in one p
The OPM is, to the best of our knowledge, a novel app
cation of linear and non-recursive Least Squared (LS) identi-
fication in the frequency domain.5,6 

Due to its salient features the results of the OPM w
extensively compared4,7,8 with other methods. However all o
these comparisons were performed using only step respo
tests. Hence, It is important and interesting to investigate
OPM results using another popular test signal. A useful a
practical test for obtaining experimental dynamic data fro
many chemical engineering processes is pulse testing. 
test signal does not generate an output offset and the
time is relatively short. Due to these features estimat
methods using pulse test signal continuously appear in
literature.2,9 

Modeling issues associated with multi-input, multi-outp
(MIMO ) systems have long been a significant focus 
attention. Even when a proposed MIMO identification 
technically sound, ease of use consideration remain a pr
ing issue to engineering practice.10 The coupling between
the system loops degrade the identification results, and 
consequence far fewer investigation were done for MIM
system as compared with single input single output on9

Therefore, there is great incentive for developing “simp
and convenient” ways to accomplish system identificati
and subsequent control design when the intended applica
is multivariable control.10 In this content the application o
the OPM to MIMO systems with decentralized controllers
investigated.

We compare the results of the OPM with those of two st
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of the art methods. These two methods are applied in open
and closed loop structures and were especially designed for
pulse response data. The bases for the comparison are com-
posed of four single input single output (SISO) dynamics
and one MIMO process.2,9 Thus the performances of the
OPM with pulse data response and MIMO/SISO structures
are thoroughly investigated in this paper. 

The paper is organized as follows. In the next section the
OPM is derived and the state of the art methods based on
pulse testing are briefly presented. The comparison between
the methods is carried out in open loop and with four
representative SISO dynamics. The results of the estimation
of the parameters of a MIMO DCS model are presented
next, and finally the last section deals with the conclusions. 

OPM Parameter Estimation

We rewrite the SOPDT model in the frequency domain as:

 (3) 

Thus the LS estimator of the squared amplitude is: 

 (4)

where: f( jω) is the frequency response data, which is
calculated from the pulse test time response.

After some modification one obtains: 

 (5)

The following substitution of variables is now in order:

 (6)

Therefore:

 (7)

The estimator is nonlinear in the parameters. To make it
linear we follow Levy's idea5 and multiply each term in the
summation by the denominator of the right hand side term.
The original loss function becomes: 

(8)

The minimum of the loss function is obtained if the
following relations hold:

 
and these result with the equations:

  (9a) 
 

  (9b) 

  (9c) 

From these linear equations x, u, z are obtained and using
Eq. (6) we get:

 (10) 

A linear LS phase estimator is now defined:

[arg f( jω) + hω + arg(1−aω2 + jbω)]2 (11)

And this yields the dead time expression: 

 (12)

 
Remarks:

1. The method6 can be used to generate and calculate 
frequency response data.

2. If the identified process is of a higher order th
arguments which minimize Eq. (8) do not minimize Eq. (7
In this case the model obtained via the minimization of E
(8) is weighted towards the high frequencies.5 Thus we
select the critical frequency as the upper limits for t
frequency summation in Eq. (9). This forces the model to
skewed towards this critical frequency. A novel features
“identification for control” is sought.10

3. A fairly pedestrian approach is taken to derive the OP
algorithm for a DCS. The extension relay on the line
properties of the method and is explained in details in la
on. 

If one follows the same lines as for the second order mo
and use a = 0, the following matrix equation is obtained fo
the FOPDT parameter estimation:

 (13) 

km and b are then calculated from Eq. (10). The dead tim
estimation is also easily obtained as:

 

 (14) 
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Two Comparative Methods Based on
Pulse Response Data

In order to investigate the relative advantages of the OPM
it is compared with the two state of the art methods. The
comparison is carried out by a simulation study over a large
number of system dynamics, which were previously selected
and used for this purpose. All the relevant aspects of the
pulse selection and related noise disturbances are already
included in the bases and therefore reflected in the
simulation results. Thus a full and a compressive study is
performed, eliminating the chance that the results are ‘only a
fluke of luck’.

In the sequel a brief description of the two state of the art
methods is given. For further details the reader is directed to
the relevant references.2,9

Open Loop Method (OLM). To apply this method, a
square pulse is introduced at the process input and a pulse
response is recorded in a relatively short time period. 

Two points (p1, p2) of the pulse time response are used in
the estimation process. p1 is selected as the first peak of the
pulse response, whereas p2 is arbitrarily chosen. The estima-
tion loss function is defined as follows:

 (15) 

The values of the parameters of the model (see Eq. (2)),
which minimize the cost given by Eq. (15), are the estimated
ones. The minimization is conducted through the MATLAB11

function “fmins”. Note that the procedure requires initial
values of the model parameters, and it is claimed that any
reasonable values are good for the initial guess.

Parameter Estimation of a DCS in a Closed Loop
Configuration (CLC) . This method is applicable for multi-
variable decentralized systems. It is assumed that the DCSs
are well defined for the control structure, therefore no “gain
directionality” problem12 is associated with these systems.

The estimation test is performed with all of the processes
in closed loops. A pulse change is sequentially applied to
each set-point while the others are kept constant. The
following matrix function is then derived:

 (16) 

where:  are respectively: the Laplace transform
of the outputs, the process matrix transfer functions, diagonal
matrix of the Laplace transform of pulse set point changes,
and diagonal matrix of control matrix transfer functions.

The Fourier transform of Eq. (16) is the ‘estimation data’.
These data is used to estimate a matrix model of FOPTD
transfer functions. The estimation loss function is defined for
each element (m, n) of the matrix model as follows:

 (17) 

The two frequencies in Eq. (17) are arbitrarily chosen and

used to find the three model parameters via the JC(m, n)
minimization. This is again conducted by the “fmins
function. Again an initial guess of the parameters is requir

Results of Estimation in Open Loops

Four example processes are used for the performance
of the OPM estimation in open loops, and the results 
compared against the OLM ones. The transfer functions
the processes are as follow2:

(18) 

A common practice is to choose the sampling frequency
10 to 30 times13 the equivalent time constant inverse. In th
example a synthesis of a proportional, integral and deriva
(PID) controller is desired. Since a PID controller ca
achieve a high bandwidth frequency,14 a sampling rate of 6
cycles/min is selected. A square pulse of a height of 1 an
width of 1 [min] is applied2 to all four-example processes. 

With the OLM one has to select an initial guess for t
parameters, and the location of the second data point.
take the second point2 p2 at t = 10 [min], and try two initial
guesses for the estimated parameters (marked 1, 2).
select these initial guesses to be symmetric around 
previously estimated values.2 Our results are designated a
OLMn1 and OLMn2, and are presented in Tables 1-4. The
subscript stands for the level of the noise, which is injec
at the process output. For the OPM initial conditions are 
required, therefore one subscript (n) is sufficient to design
our results with this method. 

The estimated models are used in a PID controller synt
sis.2 Thus the integral of absolute difference (IAD) betwee
the designed closed loop response and the true on
considered as a relevant quality measure for the quality
the PE. The closed loops responses to a combi
disturbance and set point unit steps are simulated, and
IADs are calculated up to 25 [min]. The values of the IAD
are presented in Table 3 for the P3(s) process. 

This process is a true SOPDT process, and a perfect 
mation should lead to a zero IAD in the noise free ca
However a difference of 116% is found between the IADs
the OLMs with a noise level of zero, and a difference 
114% for the noise level of one. Thus, the OLM resu
highly depend on the initial guess.

With the OPM we first calculate the open loop frequen
ratio for the various noise levels. The process freque
response for pulse input is calculated as follows6:

 (19)

The number of frequency points to be calculated is

JO = p1 p1m–  + p2 p2m–  + 
d
dt
-----p2 t( ) d

dt
-----p2m t( )–

P̂ = R̂Ŷ
1– − Î[ ]

1–
Ĉ

1–

Ŷ, P̂, R̂, Ĉ

JC m,n( ) =  
i =1

2

∑ P̂m n, j ωi( ) Ĝm n, j ωi( )–

P1 s( ) = 
e 3s–

s 1+( )2
2s 1+( )

---------------------------------------;  P2 s( ) = 
1

s 1+( )5
------------------;

P3 s( ) = 
e s–

9s
2

2.4s 1+ +
---------------------------------;  P4 s( ) = 

e s–

2s
2

2s 1+ +( ) s 1+( )
---------------------------------------------------;

f jω( ) = 
jω  

0

∞∫ y t( )e jω t–
dt

H 1 e jωD––( )
----------------------------------------
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an.
matter of ‘curve fitting’ technique. For a second order system
three points of the amplitude frequency graph are required to
fix the values of the three parameters (km, a, b). If noise is
present two more frequency points are needed to designate
the noise parameters. To be on the safe side the points
number is doubled. 

Ten points of frequency are then calculated in the interval
(0, Critical frequency]. These points are used in Eqs. (9),
(10), (12) to calculate the values of the parameters. As stated
the P3(s) process is a SOPDT one, therefore the estimation
results can be directly compared against the true ones. The
f( jω) points of this process are depicted in Figure 1 against
the Bode plot of the model. The match is tight and no
difference can be observed between the data points and the
relevant Bode points of the OPM0 model. It is obvious from
the data in Table 3 that the results of the OPM are the closest
to the true ones, and are the less sensitive to the noise. In
order to emphasize the relative improvement of the OPM as
compared with another method (i), we define the relative
improvement of the IAD value as:

RIADi =  (20) 

where  is the closed loop IAD between the
response of the OPM model of zero noise and the true one.
The RIADs are computed and added to Tables 1, 2 and 4. 

The RIAD values clearly demonstrate the major improve-
ment obtained with the OPM. This is further demonstrated in
Figure 2. where the various P1(s) model responses in the
closed loop are depicted against the true one. Obviously the
OPM0 response is almost the same as the true one, whereas
the OLM ones significantly differ from it. The noise
influence can be detected by the RIAD difference between
the 0 noise level case and the 1 noise level. From Tables 1, 2
and 4 the additional average for the OPM is 18% as
compared to an average of 81% for the OLM. For the true
SOPDT process the RIAD resolution is very poor. Therefore

instead of the RIAD the IAD values are presented in Table
Again, the OPM-IAD values are much smaller than t
OLM ones. 

IAD i IAD OPM0
–

IAD i

---------------------------------------

IAD OPM0

Figure 1. Frequency response data points of P3(s) against the Bode
plot of its OPM0 model.

Table 1. Estimation results of 

Method
Noise
Level

STD km a b h RIAD 

OLM01 0 0 0.989 1.374 2.344 2.867 97.9
OLM02 1.283 4.545 4.264 2.312 96.6
OPM0 1.000 3.181 3.505 3.503 00.0
OLM11 1 0.01 1.035 2.573 3.208 1.047 98.0
OLM12 0.955 2.804 3.349 4.151 95.8
OPM1 0.982 3.549 3.648 3.378 23.0

Notes: A. Initial conditions for OLMn1 are - km = 0.5 a = 2 h = 2.
B. Initial conditions for OLMn2 are - km = 1.5 a = 5 b = 4.5 h = 4.
C. STD-standard deviation of a Gaussian noise with zero me
D. RIAD\PID settings (KC = 0.931, JI = 4.34 JD = 1.54)

Table 2. Estimation results of 

Method
Noise
Level

STD km a b h RIAD 

OLM01 0 0 0.524 1.729 2.630 0.861 81.1
OLM02 0.824 2.012 3.155 2.568 70.9
OPM0 0.998 3.753 3.469 1.551 0.0
OLM11 1 0.01 0.524 1.729 2.630 0.861 81.0
OLM12 0.927 2.340 3.438 2.470 71.3
OPM1 1.010 3.785 3.566 1.506 6.3

Notes: A. Initial conditions for OLMn1 are - km = 0.5 a = 1.5 b = 2 h = 1.
B. Initial conditions for OLMn2 are - km = 1.5 a = 4.5 b = 4.5 h = 2.
C. RIAD\PID settings (KC = 1.41, JI = 3.50 JD = 1.50). 

Table 3. Estimation results of 

Method
Noise
Level

STD km a b h IAD 

OLM01 0 0 0.961 11.111 1.711 0.305 1.193
OLM02 1.097 7.671 3.209 1.578 2.588
OPM0 0.996 9.019 2.387 1.002 0.022
OLM11 1 0.01 0.753 7.152 1.080 0.927 1.354
OLM12 1.252 7.644 3.721 1.535 2.903
OPM1 0.992 9.190 2.387 0.957 0.073
True values 1.000 9.000 2.400 1.000 0.00

Notes: A. Initial conditions for OLMn1 are - km = 0.5 a = 6 b = 2 h = 0.8.
B. Initial conditions for OLMn2 are - km = 1.5 a = 12 b = 4 h = 1.5.
C. IAD\PID settings (KC = 1.95, JI = 3.33 JD = 3.02).

Table 4. Estimation results of 

Identification
Method

Noise
Level

STD km a b h RIAD 

OLM01 0 0 0.578 0.818 1.425 2.620 74.6

OLM02 0.437 0.251 1.097 3.014 80.2

OPM0 0.999 2.388 2.367 1.649 00.0

OLM11 1 0.01 1.119 6.712 2.363 0.458 72.0

OLM12 0.690 0.827 1.818 2.587 67.1

OPM1 1.010 2.177 2.381 1.689 23.7

Notes: A. Initial conditions for OLMn1 are - km = 0.5 a = 2 b = 1 h = 1.
B. Initial conditions for OLMn2 are - km = 1.5 a = 6 b = 4 h = 2.
C. RIAD\PID settings (KC = 1.15, JI = 2.01 JD = 1.69). 

P1 s( )

P2 s( )

P3 s( )

P4 s( )
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Results of Estimation in Closed Loops

The example system is a 3× 3-distillation dynamics, and
the process transfer functions are listed in Table 5. The
following test procedure is followed.9 Firstly, decentralized
proportional controllers are applied to the dynamics in closed
loops. The proportional gains are 1, -0.1 and 1 for loops 1, 2
and 3, respectively. Then, a rectangular pulse having height
of one and width of one [min] is applied to the set point of
each control loops one at a time and a sampling rate of 0.1
[min] is used. The CLC procedure is now used to obtain the
estimation data at the two frequency points9: 0.01 and 0.05
[rad/min]. 

Instead of minimizing the loss function of Eq. (17) for
each system component, we minimize the following global
loss function:

 (21) 

If the “fmins” routine is used to minimize this cost function
it results with negative delays and negative time consta
Therefore an optimization with zero lower bound on t
delays and time constants is applied, and is carried outvia
the MATLAB “constr” function. Two sets of initial
conditions are used, and the results are designated CLC1 and
CLC2. These results are depicted in Table 5 and the asso
ed initial conditions are presented in Table 6. It can 
observed that the CLC1 values for  and  are
approximately half of those obtained with the CLC2. More-
over, using the single estimator of Eq. (17) another valu
were obtained9 for the parameters of the distillation model.

Returning to the OPM, a global amplitude loss function
introduced as follows:

 (22a)

where: 

 (22b) 
 

Using the same reasoning a global phase estimator is 
easily derived. 

Since any system component (m, n) is independent, the
linear LS solution of the global estimator of Eq. (22) 
exactly the same as the one for the single estimator, i.e the
solution of Eqs. (9)-(10) is repeated for every (m, n) compo-
nent. The same reasoning is also true for the solution of
global phase estimator.

The ‘estimation data’ used with the CLC method is al
used with the global OPM estimator, and the estima
parameters are presented in Table 5. Again the OPM res
are very close to the true ones (see Table 5 for details)
contrast to the previous results no ambiguousness exJC =  

m n,
∑ JC m,n( )

P̂1,3 P̂2,3

JA =  
m n,
∑ JA m,n( )

JA m,n( ) =  
i=1,2

∑ fm n, j ωi( ) 2 Gm n, j ωi( ) 2–[ ]
2

Figure 2. True and estimated closed loop responses of P1(s) with a
series PID controller (kc = 0.931, τI = 4.34, τD = 1.54).

Table 5. Processes and estimated models of a 3× 3 distillation system

Process Actual Estimated

CLC1 CLC2 OPM

 

P̂1,1 0.66e 2.6s–

6.7s 1+
---------------------- 0.66e 2.60s–

6.7s 1+
------------------------ 0.66e 2.60s–

6.7s 1+
------------------------ 0.66e 2.59s–

6.7s 1+
------------------------

P̂1,2 0.66– e 3.5s–

8.64s 1+
------------------------- 0.61– e 3.51s–

8.63s 1+
--------------------------- 0.61– e 3.51s–

8.63s 1+
--------------------------- 0.61– e 3.5s–

8.63s 1+
-------------------------

P̂1,3 0.0049– e s–

9.06s 1+
-------------------------- 0.0048– e 0.70s–

6.49s 1+
--------------------------------- 0.005– e 1.46s–

15.18s 1+
------------------------------ 0.0049– e 0.99s–

9.06s 1+
---------------------------------

P̂2 1, 1.11e 6.5s–

3.25s 1+
---------------------- 1.11e 6.50s–

3.25s 1+
------------------------ 1.11e 6.50s–

3.25s 1+
------------------------ 1.11e 6.49s–

3.25s 1+
------------------------

P̂2 2, 2.3– e 3s–

5s 1+
------------------- 2.30– e 3.00s–

5.00s 1+
--------------------------- 2.30– e 3.00s–

5.00s 1+
--------------------------- 2.29– e 3.00s–

4.99s 1+
---------------------------

P̂2 3, 0.01– e 1.2s–

7.09s 1+
------------------------- 0.01– e 1.04s–

4.66s 1+
--------------------------- 0.01– e 1.33s–

10.06s 1+
--------------------------- 0.01– e 1.19s–

7.09s 1+
---------------------------

P̂3 1, 34.68– e 9.2s–

8.15s 1+
---------------------------- 34.7– e 9.2s–

8.2s 1+
------------------------- 34.7– e 9.2s–

8.2s 1+
------------------------- 34.68– e 9.18s–

8.16s 1+
------------------------------

P̂3 2, 46.2e 9.4s–

10.9s 1+
---------------------- 46.2e 9.3s–

10.9s 1+
---------------------- 46.2e 9.3s–

10.9s 1+
---------------------- 46.24e 9.35s–

10.93s 1+
---------------------------

P̂3 3, 0.89 11.61s 1+( )e s–

3.89s 1+( ) 18.8s 1+( )
-------------------------------------------------------

0.86e 0.62s–

6.83s 1+
------------------------ 0.86e 0.62s–

6.82s 1+
------------------------ 0.86e 0.62s–

6.59s 1+
------------------------
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between the OPM results which are obtained with the single
and global estimators. 

Conclusions

The OPM is extended to the MIMO case and it’s results
are investigated and compared against two state of the art
methods based on pulse testing. 

The comparison is performed by a simulation study. To
remove the chance that the study results are just ‘a fluke of
luck’ two comparative test bases from the literature are used.
One basis includes four high order SISO dynamics and the
second includes a 3× 3 MIMO process with decentralized
controllers in closed loops. In all the cases the OPM results
are better than those obtained with the previous methods.
The OPM results are also found to be more robust to the
measurement noise. 

As differ from the previous methods, the OPM is linear
and it’s results do not depend on an ‘initial guess’ of the
parameters. Moreover, the drawback of multiple solutions of
the previous methods is removed. It is also shown that the
OPM results for a global MIMO estimator are identical to
those of several SISO estimators. This outcome is unique to
the OPM and is not achieved by any of the previous methods.
In other words, a linear algorithm for the explicit solution of
the MIMO global estimator is obtained whose calculation
burden is equivalent to the one of an SISO estimator. 

These highly facilitated the application of the OPM at t
plant floor especially with MIMO systems.

Nomenclature
a : denominator coefficient in eq. 3
b : denominator coefficients in eq. 3

 : diagonal matrix of control transfer functions
D : width of pulse [min]
f, fm,n : frequency response data [rad/min]
G : transfer function of a process model
H : height of pulse
h : dead time [min]

 : identity matrix
j : fundamental imaginary number
JA, JA(m,n) : LS estimators of the squared amplitude
JL : Levy estimator
JO : OLM estimator
JP, JP(m,n) : Phase estimators
kc : controller proportional gain
km : model gain
P : transfer function of a process

 : multivariable process matrix function 
 : component of 

p1, p2 : data points from the pulse response curve
p1m, p2m : points from the model pulse response curve

 : diagonal matrix of pulse set point changes
s : Laplace variable
t : time [min]
u : assigned variable
x : assigned variable
y(t) :  process output 

: matrix of multivariable outputs
z : assigned variable

Greek Letters
ω : vector of frequency points [ rad/min]
τD : controller derivative time [min]
τI : controller integral time [min] 
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Table 6. Initial conditions for the estimation of the distillation
system

Process Initial Conditions

CLC1 CLC 2

P̂1,1 0.3e 1s–

3s 1+
---------------- 1e 4s–

10s 1+
------------------

P̂1,2 0.3– e 2s–

4s 1+
------------------- 1– e 5s–

12s 1+
------------------

P̂1,3 0.002– e 0.5s–

6s 1+
---------------------------- 0.007– e 1.5s–

15s 1+
----------------------------

P̂2 1, 0.5e 3s–

1s 1+
---------------- 1.5e 10s–

5s 1+
------------------

P̂2 2, 1– e 1.5s–

2.5s 1+
------------------- 4– e 4.5s–

7.5s 1+
-------------------

P̂2 3, 0.005– e 0.6s–

4s 1+
---------------------------- 0.02– e 1.5s–

10s 1+
-------------------------

P̂3 1, 17– e 5s–

4s 1+
------------------ 50– e 15s–

12s 1+
--------------------

P̂3 2, 25e 5s–

5s 1+
--------------- 60e 15s–

15s 1+
------------------

P̂3 3, 0.5e 0.5s–

3s 1+
------------------- 1.5e 1.5s–

10s 1+
-------------------
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