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The vibartional energy levels of triatomic van der Waals complexes, e.g., He-I, and He-Cl,, are studied theoretically.
Not only because a weak bond exists in these systems but also because the excited states are of interest, very
accurate numerical methods are required to determine vibrational structures of the complexes. The self-consistent-
field (SCF) and the configuration interaction (CI) methods are employed to study several low lying bound states.
Particularly the useful but approximate SCF method is extensively studied by comparing its results with those of
in-principle-accurate CI method. It is found that the SCF method produces reasonable vibrational energy levels when

Jacobi coordinates are utilized.

Introduction

The van der Waals complexes, ie., molecules having at
least one chemically weak van der Waals bond, have attrac-
ted a lot of attention both experimentally and theoretical-
ly.!”%2 Experimental techniques such as high-resolution IR
absorption spectroscopy, Fourier-transform infrared spectros-
copy, and microwave spectroscopy provide a wealth of infor-

mation on the geometrical and vibrational structures of van
der Waals complexes. In many weakly bound molecules the
deviation from harmonic behavior is very large even for
ground vibrational state. It is to obtain the vibrational energy
level structure of the complexes from the given potential
energy functions and to interpret the level structure in terms
of vibrational dynamics involved. The need for theoretical
methods arises from the very rapid progress in experimental
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van der Waals complex spectroscopy.

To determine vibrational structures of polyatomic molecu-
les, harmonic motions are usually assumed to obtain vibra-
tional frequencies. Or sometimes the derivatives of potential
energy functions around the minimum are used to determine
fundamental vibrational frequencies. These techniques are
useful but can not be applied to vibrationally excited states.
For diatoms, the direct numerical integration of the relevant
Schr dinger equation suffices to produce all the accurate
vibrational levels, but for polyatoms it is not easy to perform
direct numerical calculations. While the perturbative app-
roach to solve the Schr dinger equation has been introduced,
in the present work we adopt the variational methods, ie.,
the self-consistent-field (SCF) approximation and the confi-
guration interaction (CI) method.

The SCF and CI methods are widely used in electronic
structure calculations, but the vibrational structure calcula-
tions using SCF and CI are not frequently reported. In SCF
method,® each vibrational mode is described as moving in
an effective field, being the average of the full potential over
the motions of all the other modes. The each vibrational
mode consists of wavefunctions called modal wavefunctions
corresponding to orbitals in electronic structure theory. Since
each modal wavefunction is associated with a formally sepa-
rate Hamiltonian, the SCF method clearly involves an assu-
mption of mutual separability of vibrational modes. However,
the SCF modes are different from normal modes. While nor-
mal modes are assumed to be independent to each other,
the SCF modes are independent but the effect of other mo-
des are already incorporated in an average sense. Yet in
the SCF method, still “the correlation” between modes is
not included. Therefore the validity and accuracy of SCF
approximation depend on the coordinates used in calcula-
tions, because each modal wavefunction is represented with
each variable composing the coordinate system chosen. The
correlation part missing in SCF approximation is incorpora-
ted in CI method. In CI, the true vibrational wavefunctions
are expressed in linear combination of configurations which
are products of modal wavefunctions. And the CI matrix is
set up and diagonalized to have exact vibrational energies
and wavefunctions.

We will discuss the theoretical SCF and Cl calculations
for the vibrational energy levels of two triatomic van der
Waals complexes, e.g., He-I, and He-Cl,. We perform the full
3-dimensional calculations and the 2-dimensional calculations
with one vibrational mode frozen. The Jacobi coordinates
are used and found to be appropriate for describing the com-
plexes because the I-I or CI-Cl bond is very strong so that
one axis should lie along the bond, which is satisfied in
Jacobi coordinates.

In the following section, the SCF method, CI method, and
the numerical integration method are explained in detail.
The following section describes the computational details in-
cluding the potential energy functions and the calculational
results are provided in the last section.

Theory

We utilize the Jacobi coordinates for triatomic van der
Waals complexes, AB---C, where C is a rare gas atom and
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AB is a covalently bonded diatom. The Hamiltonian for AB--
C complex can be written as, in atomic units,

:_L_a( _0>_ 1 _3( z_a_)
HORO= =30 o "o )™ 2k ok \R R
2
i r

+ gt g+ VORD) M
where 7 is the internuclear distance between atom A and
atom B, R is the distance between rare atom C and the
center of mass of diatom AB, and 6 is the angle between
bond vectors associated with » and R. wy=mmp/(ns+mpg)
is the reduced mass of atom A and B, and po=mc(n,+mpg)/
(ma+mg+mc) is the reduced mass of diatom AB and rare
atom C. j and / are the two angular momenta associated
with » and R, respectively, and the total angular momentum
J(=j+1D is considered to be zero. Thus

o_p__—1 9 ( . 0 )
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and V(,R0) is the potential energy function. The range of
0 is defined from 0 to n and the range of R and r is from
0 to oo

The Schrodinger equation is
H(rR0) ®rR0)=EPFR0) 3

where E is the vibrational energy and ®@R,0) is the vibra-
tional wavefunction. If we substitute ®( R 0) with ¥(#R.0)
/rR, the reduced equation is

H(R®) Yr,RO)=E Y#R0) @

where W(,R,0) is normalized such that [[[[¥(R,0)]%sin6d6d-
Rdr=1. And the reduced Hamiltonian is

D U S W A S
H(r.R0)= 2u o 22 aR2+ 2u® * 2P2R2

+ Vi) + Vy(R,0). ()]

Vi(r) is the potential energy function for diatomic molecule
AB, while V(R 0) is the rest part of whole potential for
van der Waals complex, ie., V#R0)=V )+ V(xR 0).

The self-consisten-field (SCF) wavefunction for (vy,02,03)
state is a product of modal wavefunctions,'® ie.,

. Y, leV3(7',R, 9) z‘IlSCFvlvzzv3(7',R, 9) = \Vlvl(r)\vzvz(R)\sts(e) (6)

H% (7, R 0) W00, R, 0) = Evyony(r, R, 9). )
Then the modal wavefunctions v should satisfy
H(#,R,0)= hi(r) + hofR) + h3(0) ®
R, () =glyln, ) )]
ha(ROWus(R)= 20py(R) (10)
RO 1a(0) = Eryus(6) 1

where gl;, g%, and &%, are modal eigenvalues, and vy, v,
and v are vibrational quantum numbers associated with coo-
rdinates », R, and 0, respectively. The hy, h;, and h; are exp-
ressed as

1 & 1
m==5 - 5t o Z O+ VRO (12)
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hoR)= —2—1“2 aiRz + 2ptR2<1r2>e+<Vz<r,R,e)>,ﬂ (13)
1 1
2w 2u,R*

The subscripts after bracket { ) indicate that the quantity
within the bracket is an integral over the modal functions
which the subscripts designate. The total SCF energy for
the (v,05,05) bound state is

hy®)=< < Yk BAHLVor,R Ok (14)

SCF
Evlv2v3 = Elvl + 821'2 + 83&'3 +E.o (15)

where E.. is

1 P 1
Ecor: - <W>v<]z>9_ <W>R<F>O_— 2<V2(KR,9)>KR,0 (16)

And, of course, the SCF wavefunction is
WL o, R, 0) =y (W e (R)W5(6). 1mn

We use the numerical grid representations, instead of
using the basis function representations, to calculate modal
wavefunctions. As we see in Egs. (12) and (13), the differen-
tial equations involving » and R coordinates can be easily
integrated. But the coordinate imposes a small problem in
numerical representations. To obtain numerical representa-
tions for y%.(0), we adopt the discrete variable representa-
tion (DVR) proposed by Light and Bacic.*™ Light and co-
workers have defined a general discrete variable representa-
tion for quantum mechanical problems which is a dual space
of normal truncated variational basis representations, i.e., it
is related by orthogonal (or unitary) transformations. The
DVR is established in order to simplify the approximate eva-
luation and manipulation of the Hamiltonian operator. In pa-
rticular, the kinetic energy operator, easily evaluated in the
variational basis representation, is transformed (exactly) to
the DVR, whereas the remaining potential (coordinate) ope-
rators, which are difficult to evaluate in the basis representa-
tion, are approximated directly (and simply) in the DVR.

In DVR a unitary transformation matrix T is defined as

T, =/ @+ /20 Pl 18)

where the square of @}’ is a numerical weight and x(=
[cos 0],) is a grid point in angle 6. Then the potential V@R,
0) is approximated to be diagonal(unchanged) in this y, basis,
but j2 and P are represented as T*j°T and T BT, respectively.
The row dimension () of T matrix is equal to a number
of basis functions when v, () is expanded in terms of
Legendre functions, and the column dimension (y) of T is
equal to a number of grid points when w%.(0) is expressed
in numerical grid representations.

The Egs. (12), (13), and (14) are all transformed by T mat-
rix to have new equations which are defined numerically.
Another words, we calculate a numerical value of v,
Wiol(R), Wi(0) at each grid point, say, 7a, Ra, and y,, respecti-
vely. The finite difference method is used to solve the diffe-
rential equations numerically with the boundary conditions,

rou

lim ' @)= lim % @)=0, lim v, ®)= lim e, (R)=0,
r—0 R—=x R—0
and tim v, @=lim y; (0)=0.
0—n 0—0

Each modal function is normalized to unity, ‘e,
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[ v @ dr=1, [ vt ® aR=1

and J“ \V3‘v3\V31'3 (9\ ¢ 10d0=1 (19)

or, numerically,

i Lw'y ) lo,=1, RL‘( (v, (R)Ywr,=1,
a- 0

ra=o
l ‘
and . Z 1 [l fo, =1 (20)

where ®,,, 0, and o, are numerical weights for 7, R, and
0 coordinates, respectively. The SCF equations (9)-(11) are
iteratively solved to obtain the converged modal eigenfunc-
tions and eigenenergies for a prechosen reference (v1,2,03)
bound state.

The vibrational configuration interaction (CI) method is
numerically exact. The SCF modal functions form a complete
set and therefore the exact wavefunctions for the multimodal
system can be expressed in linear combination of products
of SCF modal functions (eq. (17)), ie.,

: ryears SCF
\I’\LIL o (KR,e): Cl'll'z*l:;"?' A & ro'ra’
17243 14213 112103

1'1'1'2 1'3'
= Y AL WO R e @D
1'11‘21'3

where cil'4%, is the constant of variational optimization. Such
an expansion, by analogy with electronic structure theory,
is referred to as a Cl wavefunction. The CI method, in prin-
ciple, produces exact solution of Schrodinger equation (1)
and also is independent of the coordinates chosen. In prac-
tice the finite number of SCF wavefunctions are used to
form CI matrix and the diagonalization of CI matrix genera-
tes accurate vibrational energies.

Computational Details

We have used pairwise Morse type potential energy func-
tions. Therefore the whole potential is assumed to be a sum
of three pairs of diatomic potentials, ie., A-B, A-C, and B-
C. The relevant Morse parameters, D, (dissociation energy),
B (exponential factor), and 7. (equilibrium distance) are listed
in Table 1. The electronic state of both of He-I, and He-
Cl, is the excited B state in which the I, or Cl, has a symme-
try of *Il,-. The atomic masses of He, Cl, and I are 7291,
63746, and 231339 au, respectively.

In numerical integrations of SCF equations, the starting
point, the end point, and grid size are repeatedly tested so
that optimum number of points are determined. For the bond
distance of AB, ie, r axis, integration is performed from

Table 1. Parameters (au) of Morse type potential energy func-
tions

Pair D. B 7.

1-1 2.238(—2)" 0.9375 5.6995
CI-Cl 1.433(—2) 1.2450 4.5610
He-I* 6.378(—5) 0.6244 7.5590
He-Ct 6.379(—5) 0.8467 6.8030

©9.938(—2)=2.238X10 2 *Ref. 24. “Ref. 25.
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r=3.0 (3.0) to r=15.0 (20.0) au with a grid of 0.02 (0.05)
au for He-I; (He-Cly). Integration for R axis is from R=4.0
(4.0) to R=25.0 (30.0) au with a grid of 0.2 (0.2) au for He-
I, (He-Cl). For the two complexes, Legendre functions of
[=0 to 40 are used for 0 axis basis functions. It corresponds
to 41 grid points in DVR scheme.

For each vibrational state of (v,,05,¢3) separate SCF calcula-
tion is performed. And CI calculation is also repeated for
each state. For example, in order to determine the CI vibra-
tional energy of (0,0,0) state, SCF calculation for the (0,0,0)
state is performed to generate all necessary modal functions
and the CI matrix is constructed with the set of these mo-
dals. For another state, eg., (0,0,1) state, another SCF is per-
formed for the (0,0,1) state and CI calculation is done with
the set of modals emanating from the SCF for (0,0,1).

It is important how many SCF configuration (products of
modal functions) are included in CI calculations. To perform
reliable CI, we have performed “state selection” process. It
is composed of many trial calculations in each of which va-
rious states are selected. The selection was based on vibra-
tional SCF state energies. The number of selected states
is different for each complex and each state. States associa-
ted with 25 to 30 v, () quantum numbers, 2 to 3 v, (R)
quantum numbers, and 5 to 10 »3 (8) quantum numbers are
included in CL It produces Cl matrices whose dimension
is in the order of 10° It may look overly large but it guaran-
tees the convergence of CI calculations. Given the potential
energy functions, we believe our CI calculations give almost
exact vibrational state energies.

Results and Discussion

Table 2 shows the low lying bound vibrational energy le-
vels of He-I, calculated using SCF approximation and CI
method. As expected, the stretching mode of I, is very strong
so that many vibrational states exist. The ground (0,0,0) vib-
rational state energy turns out to be —4860.84 cm™! from
very accurate CI with respect to the complete dissociation
limit of three atoms, z.e., He, I, and I. From SCF calculations
we obtain the ground state energy of —4860.65 cm™ . The
energy gap between the (1,0,0) state and the ground state

Table 2. Vibrational energy levels (cm™!) of He-I,

Vibrational This work Others
modes
(wv203) SCF CI cr SCF ClI
©, 0, 0 - - - - -
0 0 1 5.45 527 5.07 7.1 49
©, 0, 2) 8.67 8.36 813 94 8.7
©, 0, 3) 9.65 9.52 931 not bound 124
0, 0, 4) 11.14 11.04 10.67
© 10 11.98 845 8.25 104 12.3
©, 2, 0) 14.04 11.86 not bound

(1,0, 00 12591 125.91

“Ref. 26. Exponential-6 potential for He-I with I-I stretching vib:
ration frozen. *I-I stretching vibration frozen.
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is calculated to be 12591 cm ™. Of course this value is sligh-
tly smaller than that of diatomic I, due to the van der Waals
bond formation between I and He. In between (0,0,0) and
(1,0,0), several vibrational states are found to exist. Four
states with bending modes of He against stiff I, are found.
Only two of the stretching modes of He against I are found
to be bound, ie., (0,1,0) and (0,2,0). The energy difference
between (0,1,0) and (0,0,0) is 8.45 cm ™! so that the zero point
energy of this stretching mode is about 4.7 cm™'. From the
potential we use (see Table 1), the van der Waals interaction
energy between He and I, is 28 cm™". Therefore any bound
excited stretching mode (0,5,0) cannot lie higher by 23 cm™!
than the (0,0,0) state. Satisfying this condition, our numerical
integration produces only two (0,1,0) and (0,2,0) bound levels.
The excitation energy to (0,3,0) from the ground state turns
out to be greater than 23 cm™!, which is consistent with
the above consideration. So (0,3,0) is not bound. The above
analyses are based on very accurate Cl results shown in
the third column of Table 2. Our CI calculations naturally
include all necessary coupling among the three modes.

Comparing the SCF (the second column in Table 2) results
with the accurate CI ones, one can immediately see that
SCF calculations are in reasonably good agreement with CI
calculations. For the bending mode of He, the difference bet-
ween SCF and CI values is less than 1 cm™!. For the I-I
stretching mode, SCF and CI values are almost identical.
It naturally verifies that strong vibrational motions like I-I
stretching mode are hardly affected by mode-mode coupling.
In case of the stretching mode of He against I, (R-axis, v5),
the difference between SCF and CI is large, eg., about 3
cm™ . Compared to absolute total vibrational energy, this dis-
crepancy is negligible but, nonetheless, it is important to
note that the R-axis stretching mode is very much correlated
or coupled with the other I-I stretching and He-I, bending
modes.

The above calculations are 3-dimensional full calculations.
We have also performed 2-dimensional restricted CI calcula-
tions in which the stretching vibrational mode of diatomic
I; is frozen. I, is assumed to be at its equilibrium internuc-
lear distance and a rigid rotor. These restricted CI results
are listed in the fourth column of Table 2. The (0,0,0) state
energy is calculated to be —13.7481 c¢m ! with respect to
the dissociation limit of He+1,. By comparing full 3-dimen-
sional CI with restricted 2-dimensional CI, we note that the
vibrational level spacing is almost same in both cases. It
gives a piece of important information that the stretching
vibrational mode of I-I affects all the ground and excited
vibrational motions of He against I, by equal amount. Of
course, it should be so because the floppy He motion, what-
soever, can not influence much on the stiff I-I motion. Accor-
ding to 3-dimensional CI, the (0,2,0) state is bound but it
is not bound in 2-dimensional CL. Even though the coupling
between I, stretching mode and He motion is small, it can
not be simply neglected when the vibrational state lies near
dissociation threshold. In vibrational predissociation dyna-
mics study the I, stretching motion is often considered to
be frozen. But our current study indicates that states near
dissociation threshold should be carefully examined when
an approximation is imposed.

Horn et al. reported SCF and CI calculations for He-I,
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Reactions that proceed within mixed acetylene-methanol and ethylene-methanol cluster ions were studied using an
electron-impact time-of-flight mass spectrometer. When acetylene and methanol seeded in helium are expanded and
ionized by electron impact, the ion abundance ratio, [CH;0H*]/[CH,OH" ], shows a propensity to increase as the
acetylene/methanol mixing ratio increases, indicating that the initially ionized acetylene ion transfers its charge to
adjacent methanol molecules within the clusters. Investigations on the relative cluster ion intensity distributions of
[CH;0H," J/LCH;OH"] and [(CH3;OH);H*]/[CH;0H:-CH,OH*] under various experimental conditions suggest that
hydrogen-atom abstraction reaction of acetylene molecule with CH,;OH ion is responsible for the effective formation
of CH;OH ion. In ethylene/methanol clusters, the intensity ratio of [CH;OH,]/[CH3;OH] increases linearly as the
relative concentration of methanol decreases. The prominent ion intensities of (CH;OH)mH over (CH,OH),, CH,OH
ions (m=1, 2, and 3) at all mixing ratios are also interpreted as a consequence of hydrogen atom transfer reaction
between C;H; and CH3;0H to produce the protonated methanol cluster ions.

Introduction

Recent studies on the properties, structures, and reactivi-
ties of molecular clusters contribute to an understanding of
the chemical dynamics and bonding in systems lying between
the gaseous and condensed phases.!™* Although the charac-
teristics of the detected ion cluster distribution have often
been attributed to the properties and even structural features
of the neutral precursors, much less is known about the
detailed microscopic processes governed by pairwise molecu-
lar interactions and local dynamics.>®

The study of specific chemical reactions within methanol
cluster ions has received a great deal of attention since it
is possible to observe directly how chemical reactivity cha-
nges as a function of stepwise solvation by monitoring the
changes in reaction channel versus the cluster size.”™'? These
extensive studies show that the dissociation accompanied by
the proton transfer occurring in cluster ions results in effi-
cient production of the protonated ion. Apart from the nume-
rous investigations of the ion-molecule reactions, fragmenta-
tions and molecular rearrangements, there are few reported
cases of hydrogen transfer mechanisms taking place within
the ionized methanol cluster itself.

Our recent investigations of the ion-molecule reactions wi-

*Author to whom correspondence should be addressed.

thin methanol containing homo- and heteroclusters®~'* show
that the intracluster proton transfer reactions strongly de-
pend on their relative composition within clusters. In CH;0H
homoclusters, the predominant observation of protonated
species, (CH;OH),H' in the mass spectrum is attributed to
the effective formation of ion-neutral complexes, (CH;0H),
[CH:OH," ---O(H)CH,] and (CH;OH), ,[CH,OH,"---OCH;].
The formation of protonated species in the mixed ethylene-
methanol heterocluster systems, however, is found to be res-
ponsible for ethylene molecules within the clusters. In this
respect, quantitative investigations on reaction mechanism
will be helpful for understanding the proton and hydrogen-
atom transfer processes in the gas-phase hydrogen-bonded
cluster ions, since no detailed theoretical and experimental
studies have been published so far on the mechanisms and
energetics of these processes.

In this work, we investigated internal ion-molecule reac-
tions in acetylene-methanol and ethylene-methanol heteroc-
luster systems,'*! in which we performed pressure-depende-
nce studies to develop a quantitative interpretation of the
reaction mechanisms behind our observations. The observed
ion-molecule chemistry of methanol-containing heteroclusters
is dramatically affected by the relative concentration of me-
thanol molecules within the clusters. The present results
provide further details of intracluster proton and hydrogen-
atom transfer reactions, z.e., the roles of ethylene and acety-



